
1Advanced Framework - Core 4.1
Documentation

HumanCodeable

May 5, 2021

F

CONTENTS

1 Introduction 5

1.1 The Core Framework . 5

1.2 File Structure - Core Framework . 6

2 Basics 7

2.1 Game Classes . 7

2.2 Level Setup . 8

2.3 Navigation . 8

2.4 Changing Levels . 9

2.4.1 Intro Level . 9

2.4.2 Transition . 10

2.4.3 Streaming Level Manager . 10

3 Components 11

3.1 Interaction Components . 11

3.1.1 Select Components . 12

3.1.2 GazeView Components . 13

3.1.3 Grab Components . 15

3.1.4 Latch Components . 17

3.1.5 Overlap Components . 18

3.1.6 Teleport Component . 19

3.2 State Components . 20

3.2.1 Active Component . 21

3.2.2 Color Component . 21

3.2.3 Drag Component . 21

3.2.4 Highlight Component . 23

3.2.5 Name Component . 23

3.2.6 Open Component . 24

3.2.7 Percent Component . 24

3.2.8 Trigger Component . 25

3.2.9 Values Component . 25

3.2.10 Velocity Component . 25

3.2.11 Visual Component . 26

3.3 Snapping Components . 26

3.3.1 Surface Connector Component . 27

3.3.2 Anchor Connector Component . 28

3.3.3 Anchor Component . 28

3.3.4 Attach Component . 29

3.4 Multiplayer Components . 30

3.4.1 Base Replication Component . 30

3.4.2 Actor Replication Component . 30

3.4.3 Component Replication Component . 31

3.5 UI Components . 31

3.5.1 Menu Pallet Component . 31

3.5.2 Panel-based Menu Components . 31

3.5.3 Tiny Display Component . 32

3.5.4 Widget Component . 32

3.5.5 Window Component . 33

3.5.6 Mini Tag Component . 33

3.6 Pawn Components . 34

3.6.1 Controls Component . 34

3.6.2 Radial Menu Component . 36

3.6.3 Touch Component . 36

3.6.4 HUD Component . 37

3.7 Info Components . 37

3.7.1 Player Info Component . 37

3.8 Miscellaneous Components . 37

3.8.1 Delete Component . 37

3.8.2 Orbit Component . 38

3.8.3 Spawn Actor Component . 38

3.8.4 Spawn Location Component . 38

3.8.5 Spectator Component . 39

3.8.6 Vehicle Component . 39

3.8.7 Video Component . 40

4 Interfaces 42

4.1 State Component Interfaces . 42

4.1.1 Components With Binary Interface . 42

4.1.2 Integer Interface . 42

4.1.3 Integer Interface . 42

4.1.4 Percent Interface . 42

4.1.5 Color Interface . 42

4.1.6 Name Interface . 43

4.1.7 Trigger Interface . 43

4.1.8 Velocity Interface . 43

4.2 Interaction Interfaces . 43

2

4.2.1 GazeView Interface . 43

4.2.2 Latchable Interface . 43

4.2.3 Overlap Interface . 43

4.2.4 Grabable Interface . 43

4.2.5 Selectable Interface . 43

4.3 Miscellaneous Interfaces . 43

4.3.1 Deletable Interface . 43

4.3.2 Highlightable Interface . 44

4.3.3 Grabbing Actor Interface . 44

4.3.4 I18n Interface . 44

5 Environments 45

5.1 Pawn Hierarchy . 45

5.2 Startup . 46

5.3 Virtual Reality . 46

5.3.1 VR Pawn . 46

5.3.2 Motion Controllers . 47

5.3.3 Motion Components . 49

5.3.4 Presets . 53

5.3.5 Asymmetric Game Play . 53

5.4 Desktop . 54

5.5 Mobile Devices . 55

6 Multiplayer 56

6.1 Client Server Models and Ownership . 56

6.2 Replication . 56

6.2.1 State Components and Interaction Components 57

6.2.2 Non-predetermined Movement . 57

6.2.3 Spawning and Deleting of Actors . 57

6.2.4 User Interfaces . 57

7 Data 59

7.1 Primary Data Assets (PDA) . 59

7.1.1 Preset Data Assets . 59

7.1.2 Level Data Asset . 60

7.1.3 Panel Data Asset . 61

7.1.4 Gesture Data Assets . 62

7.2 Data Tables . 63

7.3 Structs . 63

7.4 Enums . 65

8 User Interfaces 67

8.1 Widgets . 67

8.1.1 Widget Buttons . 68

8.1.2 Pallet Widgets . 68

8.1.3 HUD Widgets . 69

3

8.2 Widget Based UI . 70

8.2.1 Info Window . 71

8.2.2 Panel Based Menu . 71

8.2.3 Pallets . 72

8.2.4 Tiny Display . 72

8.2.5 Mini Tags . 72

8.2.6 HUD . 73

8.3 Widget-less UI . 73

8.3.1 Selection Menu . 73

8.3.2 Radial Menu . 74

9 Glossary 75

4

1 INTRODUCTION

Version 4.0 of the Advanced Framework brings some major innovations

compared to older versions. Responding to various user issues with the

convoluted version 3.1 we decided to split the Framework into a slim

core and a number of extensions, that can be purchased separately. The

Core Framework can be used on its own or combined with a selection of

Advanced Framework Extensions which provide additional functionali-

ties and examples tailored to a specific type of application. Up until now

five AF Extensions are planned for the following use cases:

• Presentation - provides the tools and environment to hold lectures

or record videos including a fully set up class room level and studio

level as examples.

• Arch Viz - summarizes all functionalities to set up, show and modify

architectural visualizations from a room to a whole building.

• Showcase - focuses on one complex actor, that can be equipped with

a myriad of functionalities for customization and interaction.

• Training - contains tools and examples to set up training simulations.

• Games - provides a selection of useful assets to create video games

and game like experiences

Additionally a number of multi-use assets like the smart watch or the

keyboard were separated in form of Advanced Framework Utilities. AF

Utilities can be freely combined with the Core Framework and any AF

Extension. Up until now the following AF Utilities are planned:

• Smart Watch - equips the VR pawn with a watch-like UI that displays

information and controls the display UI element.

• Keyboard - provides an actor that can be used as keyboard in the

application

• Paintbrush - provides an actor that can create multicolored splines

• Minimaps - components, materials and UI to setup and display 2D

and 3D minimaps including minimaps with multiple floors.

• Webbrowser - UI and functions to access and display webpages

Splitting the Framework into a Core, Extensions and Utilities enables

everyone to purchase their own modification of the Framework that is

adapted to their specific use case. Also it allows us to include many more,

hand made, ready to use examples to facilitate using the Framework even

for less experienced users.

1.1 The Core Framework

The Core Framework provides all basic functionalities. Neither AF Ex-

tensions nor AF Utilities can function without the AF Core. The AF Core

provides:

• over 20 components to implement all kinds of functionalities.

• pawns adjusted to VR-, desktop- and mobile environments.

• various UI elements including a HUD, menus and pallets

• all basic game- and info-files, helpers, managers and widgets

• 11 example maps to showcase the basic tools of the AF Core

5

1.2 File Structure - Core Framework AFCore
Animations
AnimBP
Blueprints

Components
Info
Interaction
Misc
Multiplayer
Pawn
Snapping
State
UI

Game
Helpers
Level
Save
Pawn
UI
Utility
VR

MotionComponents
MotionControllers

Widgets
Curves
DataAssets

Gesture
Level
Panel
Presets

Datatables
Enums
Examples
Font
Interface
Libraries
Maps
Materials
Meshes
Sound
Splash
Structs
Textures

The AF Core has a predetermined folder structure which can be the basis

for any project. Every new element of your experience can be integrated

unequivocally into the structure to keep even large projects neat and easy

to navigate. Most of the folders are self explanatory: the folders named

Animations, Materials, Meshes, Particles, etc. will contain their respective

file type. Hereafter, you find a list of the folders that are most important

in this documentation and what they contain.

Blueprints contains most of the logic provided by the framework.

Components contains the custom components of the AF Core. For further

information see section 3.

Game contains all game classes (see section 2) like the game mode

or the player controller.

Helpers contains actors that support components or other actors in

their functions. Helpers are spawned automatically and do

not need any setup.

Level contains all files for a basic level setup like the MapInfo

Actor or the Post Process Volume for highlighting.

Pawn contains the pawn parent classes of the AF Core.

UI contains all UI-actors provided by the Framework including

pallets or the info window (see section 8).

VR contains the motion controller and the motion components

as described in section 5.3.3 and 5.3.2.

Widgets contains all custom made AF Core widgets

Data Assets contains a number of objects used to store data (section ??).

Examples contains all Meshes, Materials and Blueprints shown in the

example maps.

Interfaces contains all interfaces governing information transmission

between components or in general.

Libraries provide a set of universally accessible functions.

Maps contains map templates.

6

2 BASICS

2.1 Game Classes

Game classes implement all basic functions for a application to function.

This includes level transitions, pawn navigation, settings and other es-

sential data.

Game Mode

Declares all other game classes except the game instance. In a multiplayer experience the game
mode is only accessible by the server, not
the clients. Therefore, we stripped a lot
of features from the game mode and dis-
tributed them to other entities.

Blueprint: BP_GameMode_Main

Settings: should not be touched

Game Instance

The game instance has the unique ability to keep its state even after a

level change which makes it useful to store persistent data. Thus, it is the

best place to store settings like language, graphics or audio. Additionally

the game instance stores the data assets of the current level.

Blueprint: BP_GameInstance_Main

Settings: all variables are automatically set when the game instance is

created

Player Controller

Figure 1. Startup and pawn selection.

The player controller spawns, possesses and navigates the pawn and

handles the level transition logic as well as the pause.

Blueprint: BP_Player_Controller_Main

Settings:

• Pawn Select - determines how the pawn is selected upon starting the

application

– Dynamic - enables the pawn selection faccording to the environ-

ment check as shown in Figure 1

– ForceVR - selects the VR pawn specified in the level data asset

not regarding the environment

– ForceDesktop - selects the desktop pawn specified in the level

data asset not regarding the environment

– ForceMobile - selects the mobile pawn specified in the level data

asset not regarding the environment

– OnlyFirstVR - defines that in multiplayer VR applications only

the player with player index 0 is in VR

Player State All other settings of the player state are
outsources now to the playerinfo compo-
nent which is covered in section 3.7.1

The player state handles and provides information on each player and

thus, is especially useful for multiplayer.

Blueprint: BP_PlayerState_Main

Settings:

• Player Index - number of the player

7

2.2 Level Setup

Figure 2. Minimum level setup.

Each level of the Framework is encapsulated in a world map that con-

solidates all maps as well as the loading of the level. Additionally, the

Framework relies on a number of essential actors in every level to func-

tion properly. These need to be placed and setup in every new level.

MapInfo Actor

refers to the data asset (DA) containing basic information about each level

like which pawns to use or which levels to load.

Blueprint: BP_MapInfo

Setup:

• Level DA - refers to the level data asset (see section 7.1.2)

Player Position

specifies the location and rotation where the player pawn is spawned

upon starting the level.

Blueprint: BP_PlayerPosition

Setup

• Player Index - limits the player pawns spawned here to one player

index

• Default - converts the player position in the default spawn point for

all players in a multiplayer experience

Post Process Volume

handles the post process highlighting. Unnecessary if no post process high-

lighting is used in the level.Blueprint: BP_PostProcess

Setup: no additional setup necessary

2.3 Navigation

The navigation elements of the Framework are mainly connected to the

teleport system which is very central to the VR environment, since normal

movement in VR is prone to cause motion sickness. The teleport navi-

gation elements mainly serve to restrict the areas a player can teleport

to. If you dont want to use teleportation to
move the pawn, you can pass including a
teleport area or teleport meshTeleport Area

Figure 3. Teleport Area

Specifies wider areas where the player can safely teleport to. The teleport

area is a plane actor with a teleport and a select component as possible

interaction methods.

Blueprint: BP_TeleportArea

Settings:

• Grid Material - defines what the teleport area looks like

• Visibility - enables the player to perceive the teleport area in the

application.

• Adjustment Search Distance - Maximum distance in which the trace

of the teleport area searches for a floor actor to teleport the pawn to.

8

Teleport Point

Figure 4. Teleport Point

Specifies a limited number of locations that the player can teleport to.

A teleport point is basically an actor containing the teleport component

(see section 3.1.6) and a number of other interaction components.

Blueprint: BP_TeleportMesh

Settings:

• Use Rotation - forces the pawn to adopt the rotation of the teleport

mesh actor if enabled

Teleport Select vs. Normal Teleport

Both teleportation elements can be either toggled via the teleport compo-
nent or via the select component.

• Teleport Select - the teleport is implemented as a custom function
using the select component as interaction component, avoiding the
teleport motion component and additional input

• Normal Teleport - the teleport is implemented using the teleport com-
ponent and the teleport motion component, providing more elaborate
controls and settings

2.4 Changing Levels

The Framework provides a number of mechanics to smoothly load or

change levels. This includes the transition and intro screens but also

managers orchestrating streaming levels within one map.

2.4.1 Intro Level

The first level loaded in an application is the intro level. The Framework

provides a completely set up intro level which can be used as a template.

It contains:

• Intro Screen - to display the intro widget and handle the transition

to the next level

• Player Position - to specify where the player pawn is spawned

• Map Info Actor - containing the level data asset with the info about

the intro level

• Skysphere - to provide the background for the intro level

Except the intro screen all other actors in the intro level belong to the

actors necessary for a basic level set up.

Intro Screen

The intro screen is the of the intro level which handles most of the logic.

It displays the intro widget and also toggles the transition to the next

level

Blueprint: BP_IntroScreen

Settings:

• Level to Load - contains the level data asset of the next level that

should be loaded

9

2.4.2 Transition

The transition object is automatically created and filled with content as

specified in the level data asset (see section 7.1.2) whenever a new level

is loaded.

Blueprint: BP_Transition For customized transitions create a child
of the transition class, customize it and enter
it as transition class into the level DA of the
corresponding levels.2.4.3 Streaming Level Manager

This manager contains an array of all streaming levels that should be

accessible in the map and the functions to exchange one streaming level

for another.

Blueprint: BP_Manager_StreamingLevel

Settings:

• Available Stream Levels - array containing a struct for each streaming

level that should be accessible

– Name - contains the key and I18n data table for the name shown

as level name

– Image - contains the texture shown for the level

– Level Name - full name of the map of the streaming level

– AR - under construction

• Currently Loaded Level - is automatically set to the selected level,

no setup necessary

• Currently Loaded Index - index of the current streaming level in the

array of streaming levels. Also determines which streaming level is

loaded upon starting the level

Overview On Setup

• In the Worldmap - add the persistent level and all streaming levels to
the same worldmap

• In the Persistent Level - add an instance of the streaming level man-
ager

• On the Streaming Level Manager Instance - enter the data for all
accesible streaming levels and the index of the first streaming level to
be loaded

• Access Method - prepare a functionality that calls the load streaming
level function of the manager

10

3 COMPONENTS

Figure 5. Component System

Components can be attached to actor classes as well as instances of

actor classes providing the desired functionalities. Components are freely

exchangeable and enable the customization of actors without building

a complicated class hierarchy. All components we created for the AF

Core fall into one of the following categories depending on their main

functionality:

Info Box - Component Tags

Every component can be equipped
with an array of tags that can be
used to refer to this component by
other components. This includes also
Unreal inherent components like the
static mesh component. Component
tags play a vital role in coordinating
component interactions. They can be
used to identify a specific component
on an actor (see section 3.1) or to se-
lect a suitable component/actor from
a set (see section 3.3).

• Interaction Components - handle the interaction between the player

and the actors in an application including selecting, grabbing and

others.

• State Components - apply, initiate and replicate changes of state for

the owning actor.

• Snapping Components - cover all necessary requirements to allow

actors to snap into place after being released by a player.

• Multiplayer Components - consolidate a set of useful components

handling the multiplayer.

• UI Components - encompass the design, display and content of UI

elements.

• Pawn Components - provide the pawn with functions like controls.

• Info Components - save and provide dynamic information that can

be changed during runtime.

• Miscellaneous Components - comprise a set of useful components

that work in the background to enable advanced functionalities.

3.1 Interaction Components

All pawns and motion controllers of the Framework are designed to

use interaction components to implement interactions of the player with

an actor. Each set of components is adapted for a specific interaction

type like select or grab. Nevertheless, all interaction components have

some common settings despite their different functions. These encompass

mainly the identification of the actor and component the interaction is

supposed to toggle and the highlighting.

Component Identification

Figure 6. Component Definition Struct

Most interaction components transmit the player input to the other com-

ponents of the actor that implement the desired functionalities. These can

be on the same actor or on another actor or on both. This facilitates the

setup of triggers. Consequently, it must be possible to distinguish a single

component on a single instance or a group of instances unequivocally.

This is done by the Component Definition Struct which contains:

• Component Tag To Search For - array of tags that label each compo-

nent on the affected actor(s) that is toggled by the interaction

 Can only be set up on an instance of the
actor.

 If no other actors are affected by the
interaction component no additional setup
is necessary.

• Actors To Trigger - array on each instance of the actor, that contains

an element for each actor instance in the level that is affected by the

interaction component

• Trigger Also Self - automatically searches the actor itself for the

component tags gathered in the Component Tag To Search For array.

11

Highlighting

Figure 7. Post Process Highlighting

Most interaction components support a customizable highlighting func-

tion. The gazeview component is the only exception. The highlight set-

tings on the interaction component that determine if and how the actor

is highlighted consist in:

• Highlight Type - specifies if and how actor is highlighted

– None - no highlighting

– Custom - uses a function implemented on the actor

– Post Process - uses a colored rim around the actor mesh for

highlighting, default setting (see Figure ??)

– Mesh - duplicates the meshes of the actor and sets a different

material to create an outline effect

– Material Function - activates a material function changing the

materials glow parameter for highlighting Not recommended for emissive materials.

• Highlight Color - determines the color for post process and material

function highlighting

• Highlight Material - defines the material highlight function Currently only one is available.

• Component Tag to Highlight - specifies the mesh that should be

highlighted by tag.

3.1.1 Select Components Comp_Select
Comp_Select_Comp
Comp_Select_SelectionMenu

The select components implement the selection of actors in the appli-

cation. Their main function however, is information transfer. In conse-

quence, select components collaborate constantly with other components

depending on what should happen upon selection.

Select Component - Base

Serves as parent class for the more specified select components and as

possibility to implement custom functionalities while profiting from the

logic of the select component.

Blueprint: Comp_Select

Settings:

• SelectEnabled - temporarily disables the select component

• Identifier - allows other components to distinguish the select com-

ponent

• Component Tag to Select - refers to the mesh corresponding to the

select component To make all meshes selectable enter
”none”.• Supported Select Sources - contains an element for each input source,

that can interact with the select component

– None - No input is accepted

– Laser - accepts the laser motion controller as input

– Screen - accepts input from all screen-type pawns

– Touch - accepts input from hand motion controller by touch

Sounds:

• Select Sound - non-looping sound that is played when the select is

toggled

12

• Hover Sound - non-looping sound that is played when the select

starts to be available for the player

• Unhover Sound - non-looping sound that is played when the select

stops to be available for the player

Events:

• Pressed Select - toggles when the key assigned to the select interac-

tion is pressed

• Released Select - toggles when the key assigned to the select inter-

action is released

• Highlight Select - toggles when the input device hovers on the actor Almost impossible to implement with a
touchscreen input device.

Select Component - Selection Menu

Figure 8. Circular Button Arrangement

 A button to close the selection menu is
automatically added.

Available Buttons

• BP_Selection_Delete

• BP_Selection_Bool_Info

• BP_Selection_Bool_Light

• BP_Selection_Bool_Open

• BP_Selection_Bool_Play

• BP_Selection_Spawn_Sub_Visual

implements the selection menu UI element (see section 8.3.1) which con-

sists in an array of buttons that connect the select component a set of

components mostly state components.

Blueprint: Comp_Select_SelectionMenu

Settings:

• Selection Buttons - contains an element for each button of the selec-

tion menu

– Button Class - determines which button is spawned

– Component Definition - specifies the state component that should

be toggled by the button

• Sorting Type - determines how the buttons of the selection menu are

arranged spatially

– Circular - arranges the buttons on a circle (see Figure 8)

– Rows - arranges the buttons in rows (see Figure 76)

– Rows and Columns - arranges the buttons in rows and columns

(see Figure 77)

Select Component - Component Selection

transmits the select directly to one component. That implements the in-

tended functionality.

Blueprint: Comp_Select_Comp

Settings:

• Component Definition - specifies which component is toggled by the

select

3.1.2 GazeView Components Comp_Gaze
Comp_Gaze_Trigger
Comp_Gaze_SelectionButton

Allows the player to interact with the owning actor via sight without

using a motion controller. The pawn constantly checks for actors with

the gazeview component in straight line of sight from the pawns head

and activates the component.

Gazeview is a great tool for players that are inexperienced with VR (or
handling controllers), since it enables the player to interact with actors
simply by looking. It is an especially good match for the VR hand motion
controller because gazeview is not dependent on a laser to interact with

13

actors out of reach of the player.

Figure 9. GazeView

GazeView Component - Base

serves as parent class of the more specialized gazeview components and

as a basis to activate customized functions using the logic of the gazeview

component.

Blueprint: Comp_Gaze

Settings:

• Identifier - allows other components to distinguish the gazeview

component

• Component Tag to Gaze At - refers to the mesh corresponding to the

gazeview component To make all meshes gaze-able enter
”none”.• Component Enabled - temporarily disables the gazeview component

Sounds:

• Hover Sound - non-looping sound that is played when the gaze starts

• Unhover Sound - non-looping sound that is played when the gaze

ends

Events:

• Gaze View - is toggled when the player gazes at the mesh specified

by the gazeview component

Gazeview Component - Component

Figure 10. GazeView Trigger With Progress

Figure 11. Gazeview with selection button.

transmits the gaze signal to another component (usually a state compo-

nent). The Gazeview Component Component also implements the trigger

with progress function, that displays a progress bar while the player

continues looking on the actor and toggles a state component when the

progress bar is full.

Blueprint: Comp_Gaze_Trigger

Settings:

• Component Definition - specifies which component the gaze toggles

• Toggle - instructs the gazeview component to act like an alteration

switch

Progress Bar:

• Use Progress Bar - enables the progress bar functionality for the

component

• Timeout Gaze - defines how long after the player stopped looking

at the actor the gaze signal is terminated

• Progress Duration - determines the time in seconds the progress bar

takes to fill completely

• Progress Bar Widget - determines what the progress bar looks like

Additional Sounds:

• Sound Progressbar - looping sound that is played during the filling

of the progress bar

Events:

• Gaze Triggered - toggles when the progress bar is filled up

14

Gazeview Component - Selection Button

spawns a button that toggles one component or other component.

Blueprint: Comp_Gaze_SelectionButton

Settings:

• Timeout Gaze - defines how long after the player stopped looking

at the actor the gaze signal is terminated

• Tag of Location Component - refers to the scene component that

determines where the selection button spawns If no Location Component is present the
selection button is spawned at the impact
location or root location according to further
settings

• Take Root As Location - instructs the gazeview component to spawn

the button at the root location instead of the impact location

• Button - states the button class of the selection button spawned upon

gaze and component definition of the button to spawn

3.1.3 Grab Components

Grab components enable an actor to be grabbed and moved by the pawn

or the motion controller.

Grab Component - Base

Right now the basic grab component is the only fully designed grab com-

ponent and implements all necessary features. However, we anticipate the

incorporation of other specialized grab components into the Framework

as is the case for most other interaction components.

Blueprint: Comp_Grab

Behaviour:

Figure 12. Should Keep Upright Examples.

 Snapping components can modify the be-
haviour of an actor upon release. See section
3.3 for more information.

• Grab Type - determines how the actor behaves during grab

– Normal - actor is attached to the motion controller or impact

location

– Physics Handle - actor is connected to the pawn or motion con-

troller via a physics handle

• Release Type - defines how an actor behaves upon release

– Free Placement - after release the actor stays where ever it is

currently

– Physics - activates physics on the actor upon release.

• Should Keep Upright - automatically rotates the grabbed actor until

its z-axis is parallel to the world z-axis, not relevant for hand motion

controllers

Sounds

• Hover Sound - non-looping sound played when the grab starts being

available

• Unhover Sound - non-looping sound played when the grab stops

being available

• Grab Sound - non-looping sound played when the grab interaction

is initiated

• Release Sound - non-looping sound played when the grab interaction

is ended

Haptics

15

• Haptics Grab - controls the haptic response of the controller from

the start of the grab and during the hold

– Haptic Curve - describes the intensity of the haptic response

starting from the begin of the grab interaction

– Duration - determines how long the haptic response is active for The specified haptic curve is stretched
and compressed according to the specified
duration.

– Strength - serves as a multiplyer to finetune the haptic response

Snap

• Snap to Controller - attaches the actor to the controller and changes

the controls according to the key section below

• Relative Controller Position - defines the relative position of the actor

to the controller after snap Only relevant for laser controllers.

Conditions

• Can be Picked Up - temporarily prevents the actor from being grabbed

• Should Auto Pickup - automatically grabs actors near the palm of

the hand motion controller, not relevant for any other controller or

non-VR environments

• Max Distance to Socket - determines at which distance of the con-

troller from the socket the grab is automatically released

• Grab Attached Actor Instead - prevents accidentally detaching at-

tached actors when trying to grab the actor

• Grab Tag - specifies the mesh of the actor that should be grabable

• Allow Multigrab - allows multiple actors (pawns or motion con-

trollers) to grab the actor Multigrab and pickup if already picked
up usually only make sense together• Allow Pickup If Already Picked Up - allows another pawn or motion

controller to grab the actor while it is held

• Require to Hit Grab Tag - ensures that the actor only can be grabbed

at the mesh specified by the grab tag. Only relevant for laser controllers.

Keys

• Occupy Keys or Functions - blocks the input of keys or functions so

they can be overridden in the event graph by custom controls of the

actor Only works in conjunction with the snap
to controller function– AllKeys - automatically clears and blocks the input of all keys

– Occupied Keys - clears and blocks the input of all entered keys

– Occupied Functions - clears and blocks all entered controller

functions

For Clarification

• Occupied Keys serves to replace the controller function of the key with
a custom function of the actor, for example the shoot function of a
gun.

• Occupied Functions serves to block and clear controller functions that
should not be used as long as the actor is held.

Events

• Grab Actor Picked Up - toggles when the actor is grabbed by a player

• Grab Actor Released - toggles when the actor is released by the

player

16

• Grab Thumbstick Axis - allows the player to use the thumbstick for

additional input while grabbing

• Grab Key Input - allows the player to use face keys for additional

input while grabbing

• Grab Highlight - toggles if the actor is highlighted by the grab com-

ponent. Use for custom highlighting.

• Grab Trigger Axis - allows the player to use the percentage the trigger

button is pressed for additional input while grabbing

• Grab Grip Axis - allows the player to use the percentage the grip

button is pressed for additional input while grabbing

3.1.4 Latch Components Comp_Latch
Comp_Latch_Drag
Comp_Latch_Physics
Comp_Latch_Simple

The difference between a grab and a latch is that for latching the motion

controller or pawn is attached to the mesh restricting its movements to

the movement possibilities of the mesh.

Latch Component - Base

serves as parent component for all latch components and for implement-

ing custom functions.

Blueprint: Comp_Latch

Settings:

• Can Be Latched Onto - temporarily disables the latch component

• Max Attach Distance - defines a distance between the controller an

the mesh the controller within which a socket can be found

• Auto Attach - automatically latches onto actors near the palm of the

hand motion controller Not relevant for any other controller or
non-VR environments.• Component Tag To Attach To - specifies which mesh of the actor the

controller or pawn should latch onto

• Allow Simultaneous Latching - allows multiple actors to latch onto

the mesh

• Minimum Detach Distance - defines the distance between socket and

controller at which the latch is automatically discontinued

Sounds

• Hover Sound - non-looping sound played when the grab starts being

available

• Unhover Sound - non-looping sound played when the grab stops

being available

• Latch Sound - non-looping sound played when the grab interaction

is initiated

• Unlatch Sound - non-looping sound played when the grab interac-

tion is ended

Haptics

• Haptics Grab - controls the haptic response of the controller from

the start of the grab and during the hold

– Haptic Curve - describes the intensity of the haptic response

starting from the begin of the grab interaction

– Duration - determines how long the haptic response is active for The specified haptic curve is stretched
and compressed according to the specified
duration.17

– Strength - serves as a multiplyer to finetune the haptic response

Events:

• Actor Got Latched - toggles when the latch is initiated

• Actor Latch Released - toggles when the latch is terminated

• Latch Highlight - toggles when the latchable mesh is hovered

• Latch Thumbstick Axis - allows the player to use the thumbstick for

additional input while latching

• Latch Key Input - allows the player to use face keys for additional

input while latching

• Latch Trigger Axis - allows the player to use the percentage the

trigger button is pressed for additional input while latching

• Latch Grip Axis - allows the player to use the percentage the grip

button is pressed for additional input while latching

Latch Component - Drag

Figure 13. Drag along a spline with rotation.

connects the latch component to the drag component to set up sliders,

buttons, levers and valves.

Blueprint: Comp_Latch_Drag

Settings:

• Drag Tag - specifies which drag component the latch component is

supposed to interact with

Latch Component - Physics

spawns a physics handle to implement the latch

Blueprint: Comp_Latch_Physics

Settings: no additional settings

3.1.5 Overlap Components However, the overlap component is able
to handle overlap interactions with the
pawn, too.

Comp_Overlap

Comp_Overlap_Comp

Comp_Overlap_Drag

Comp_Overlap_Select

The overlap components enable the implementation of triggers that react

to actors that are not the pawn. The most prominent is a pressure plate.

Overlap Component - Base

serves as parent class for all overlap components and as a means for

implementing custom functions.

Blueprint: Comp_Overlap

Settings:

• Enabled - allows to temporarily disable the component

• Component Tag Of Collision - refers to the collision volume that

toggles the component

• Actors To Allow - contains an array of actors that are supposed to

trigger the overlap events

• Objects To Allow - contains an array of objects that are supposed to

trigger the overlap events

• Component Tags To Allow - contains an array of tags that specifies

which tag the actors need to have to trigger the overlap events

• Identifier - identifies the component towards others as source of the

trigger

18

Sounds

• Sound Overlap - a non-looping sound played when an actor, object

or component specified in the settings starts overlapping

• Sound Overlap - a non-looping sound played when an actor, object

or component specified in the settings stops overlapping

Events

• Actor Begin Overlap - toggles when an actor, object or component

specified in the settings starts overlapping

• Actor End Overlap - toggles when an actor, object or component

specified in the settings stops overlapping

Figure 14. Overlap Component Component.

Overlap Component - Component

transmits the signal of the overlap component to one component on an

actor (Figure 14).

Blueprint: Comp_Overlap_Comp

Settings:

• Component Definition - defines the actor and the component the

overlap component should trigger

• Identifier - transmitted by the overlap component as proof of origin

• Trigger Toggle - enables the overlap component to act like an alter-

ation switch

Overlap Component - Drag

Figure 15. Overlap Drag Component.

connects the overlap component to a drag component (Figure 15).

Blueprint: Comp_Overlap_Drag

Settings:

• Tag of the Drag Component - specifies which drag component the

overlap component is supposed to interact with.

3.1.6 Teleport Component

enables an actor to be the target of a teleport movement interaction.

Blueprint: Comp_Teleport

Settings:

• Enabled - temporarily disables the teleport component To switch from normal teleport to teleport
select disable the teleport component on the
teleport point or area and enable the select
component and vice versa.

• Teleport Duration - determines the time in seconds the teleport takes

• Teleport Fade - defines how the camera handles the teleport

– No Fade - disables camera fades for the teleport

– Fade In and Out - implements camera fades at the beginning

and at the end of the teleport

– Fade In - implements a camera fades only at the beginning of

the teleport

– Fade Out - implements a camera fade only at the end of the

teleport Camera fades make no sense with the Full
Motion teleport motion setting.• Teleport Motion - determines how much of the movement of the

pawn during teleport is shown to the player

– None - shows no movement

19

– Indication - shows the first few seconds of the teleport to indicate

movement

– Full Motion - shows the full movement

• Teleport Level - adjusts which part of the pawn is teleported to

exactly the chosen location

– Ground Level - teleports the pawn so that the feet of the char-

acter pawn are at the chosen teleport location Not suitable for non-Character Pawns.

– Eye Level - teleport the pawn so that the camera is at the chose

location.

• Rotation Type - specifies how the pawn rotation is handled during

teleport.

– Force Rotation - prevents any influence from teleport controls

and overrides the pawn rotation with the rotation of the actor

owning the teleport component

– Allow Custom Rotation - enables the teleport rotation from the

preset data asset (see section 7.1.1) to determine the pawn’s ro-

tation after teleport

– Do Not Rotate - keeps the pawn´s original rotation

Sounds

• Sound Teleport - non-looping sound played when the teleport is

executed

• Hover Sound - non-looping sound played when the teleport trace

hits an actor with the teleport component

• Unhover Sound - non-looping sound played when the teleport trace

leaves an actor with the teleport component

3.2 State Components

Interfaces

Each state component implements an
interface to standardize information
transfer between the state component
and the actor or the interaction com-
ponents (see also section 4).

Figure 16. Source Info.

 The interacting pawn, actor and source
object are only accessible in instances.

State components implement the main functionalities of an actor like

toggling a light or executing a visual change. They usually are activated

by interaction components or another state component and implement a

plethora of common functionalities.

Source Info

The source info is a struct identifying the interaction component which

toggled the state component in question. It is transferred to the state

component whenever the interaction component toggles it and can be

accessed by the event dispatcher to be used in custom functions.

• Interacting Pawn - pawn who initiated the interaction

• Referencing Location - usually the impact location

• Interacting Actor - motion controller or pawn that initiated the in-

teraction

• Source Object - actor owning the interaction component

• Identifier - label identifying the interaction component

Component Tag

Component tags serve as references for the state component to be used

by the interaction components. State components can have several tags

20

as well as share tags to be toggled in parallel. As long as one tag fits the

specification in the interaction component the state component is toggled.

Figure 17. Component Tag.

3.2.1 Active Component

Activates or deactivates a functionality of an actor, for example playing

a movie on the TV screen

Blueprint: Comp_Active

Interface: Interface_StateComponent_Binary

Settings:

• Value - determines the starting value of the active-Boolean

Sounds

• Sound Deactivate - non-looping sound played when the active state

changes from true to FALSE

• Sound Activate - non-looping sound played when the active state

changes from FALSE to true

Events:

• Active State Changed - toggles whenever the current state of the

component changes

• In Editor Active State Changed - toggles whenever the current state

of the component is changed in editor

3.2.2 Color Component

Figure 18. Color Component Example.

How The Delete Component Sup-

ports Spawning

The animation provided by the delete
component can also be used to sup-
port spawning an actor. In this case
the delete component only provides
the animation which is toggled directly
after spawning the actor.

initiates a color change on a given actor.

Blueprint: Comp_Color

Interface: Interface_StateComponent_Color

Settings:

• Value - determines the starting color

• Available Colors - contains an element for each color the component

should support

Sounds

• Color Change Sound - non-looping sound played whenever a color

change is initiated

Events:

• Color State Changed - toggles whenever the current color changes

• In Editor Color State Changed - toggles whenever the current color

is changed in editor

3.2.3 Drag Component

Figure 19. Snap Types on a Linear Drag.

Enables a mesh of the actor to be moved relative to all other meshes to

create sliders, buttons or more complex triggers or puzzles.

Blueprint: Comp_Drag

Interface: Interface_StateComponent_Trigger

Settings:

• Drag Type - defines the spacial curve of the drag

– Linear - the mesh is dragged along a straight line parallel to the

x-, y- or z-axis like a slider

21

– Angle - the mesh is dragged along an angle around the x-, y- or

z-axis like a lever

– Spline - the mesh is dragged along a customized spline that can

describe curves and bends (see Figure)

– Spline With Rotation - the mesh is dragged along a customized

spline and can rotate around this spline (see Figure)

– Rotation - the mesh rotates around the x-, y- or z-axis like a valve

Figure 20. Spline Drag.

• Snap Type - defines how the dragged mesh behaves upon release

– Free Movement - the mesh remains at the position it is at

– Snap To Segment - the mesh moves to the nearest section and

stays there

– Reset - the mesh moves to the start position of the drag

• Start Position - determines the position of the dragable mesh upon

spawn or the start of the level

• Snapping Speed - defines how fast the dragged mesh snaps to its

intended position after release. Not relevant for the FreeMovement snap
type.• Follow Speed - defines how fast the dragged mesh follows the motion

controller or pawn

• Select Rule - determines how the select component interacts with the

drag component If a latch component is used for interacting
with the drag component this setting does
not apply.

– Toggle Extremes - select moves the dragable mesh between the

highest and lowest section

– Step Up Modulo - select moves the dragable mesh to the next

section that is higher than the current If the highest section is reached a select
resets the drag– Step Down Modulo - select moves the dragable mesh to the next

section that is lower than the current

 If the lowest section is reached a select
resets the drag

• Toggle - enables the component to work like an alteration switch

• Inverted Percent - commands the component to invert percentage

calculation
 Section values indicate relative position.
By default the component converts these
into percentage entering the lowest section
value as 0% and the highest as 100%

• Identifier - identifies the component towards others as source of the

trigger

• Component Definition - allows the drag component to toggle an-

other state component similar to interaction components. For more

information see section 3.1.

• Sections Set - contains an array of float values defining the relative

position of sections of the drag. The sections set needs at least 2 values the
start and finish value.• Looping Sound - played during the whole time the drag is active

• Component Tag to Control - specifies the mesh that should be dragged

by stating its tag

Events:

• Drag State Changed Single - toggles once when the section of the

drag is changed

• Drag State Changed Constant - toggles every tick as long as the

dragable mesh is grabbed and/or moved

• Snapping Completed - toggles after the dragable mesh was released

and repositioned according to snap type

Figure 21. Highlighting Examples.

22

3.2.4 Highlight Component

serves for highlighting actors independent of interaction components to

indicate mission targets for example (see Figure 21).

Blueprint: Comp_Highlight

Interface: Interface_StateComponent_Binary

Settings:

• Type - defines what the highlight looks like

– None - no highlighting

– Custom - uses a function implemented on the actor

– Post Process - uses a colored rim around the actor mesh for

highlighting

– Mesh - duplicates the meshes of the actor and sets a different

material to create an outline effect

– Material Function - activates a material function changing the

materials glow parameter for highlighting Not recommended for emissive materials.

• Highlight Tag - allows to highlight only meshes with the given tag

• Use Highlight Tag - enables highlighting of selected meshes by tag

• Highlight Material - defines the material put on the duplicate mesh

created for mesh highlighting Of no consequence for highlighting types
apart from mesh highlighting.• Color - defines the color of post process, mesh and material function

highlighting

Sounds:

• Sound Start Highlight - non-looping sound played when the high-

lighting is activated

• Sound Stop Highlight - non-looping sound played, wehn the high-

lighting is deactivated

• Sound Loop - looping sound played, during highlighting

State

• Value - defines if the highlight is active or inactive at the start of the

level and can be used to regulate the highlighting during runtime

Events:

• Highlight - toggles a custom highlight function

3.2.5 Name Component

Figure 22. Spawner using the name component

serves to save and replicate a name variable.

Blueprint: Comp_Name

Interface: Interface_StateComponent_Name

Settings:

• Value - starting value for the name

• Available Names - defines an array of names supported by the com-

ponent

Events:

• Name State Changed - toggles whenever the name variable of the

component is changed

• Name State Changed In Editor - toggles whenever the name variable

of the component is changed in editor

23

3.2.6 Open Component

Figure 23. Angular opening.

 If more than one mesh is affected by
the open action add one entry in the open
map for each mesh and refer to it with an
individual tag
 For more complex processes like the
movement along multiple axis include mul-
tiple transform maps each describing a part
of the transformation
 The curve defined here is compressed or
stretched according to the duration defined
below.

Enables the actor to open and close by transforming on of its meshes

according to the settings of the component.

Blueprint: Comp_Open

Interface: Interface_StateComponent_Binary

Settings:

• Open Map - describes the open action in terms of movements or

scaling

– Text Field - contains the component tag of the mesh affected by

the open action described below

– Transform Map - describes one part of the open transformation

∗ Location - moves the mesh linearly parallel to the correspond-

ing axis

∗ Rotation - rotates the mesh around the corresponding axis

∗ Scale - scales the mesh along the corresponding axis

∗ Custom - custom function implemented on the actor

– Open Value - transformation value, when the actor is open

– Close Value - transformation value, when the actor is closed

– Curve - describes the opening or closing speed as percent (of the

movement) vs time

– Duration - defines how long the transformation takes in seconds

• Open - determines the starting value of the open component.

– Value - set true to use the open values defined in the transfor-

mation maps and to FALSE to use the closed values

Sounds

• Sound Open - non-looping sound played when the value changes

from FALSE to true

• Sound Close - non-looping sound played when the value changes

from true to FALSE

Events:

• Open Percent Changed - transmits the percentage of the movement

every tick during the open/close process

• Open State Changed - toggles when the movement arrives at the

open/closed relative transform

3.2.7 Percent Component

serves to receive and save a float number.

Blueprint: Comp_Percent

Interface: Interface_StateComponent_Percent

Settings:

• Value - determines the starting value of the float

Events:

• Float Changed - toggles when a new float value is transmitted to the

component

• Float Changed In Editor - toggles when a new float value is trans-

mitted to the component in editor

24

3.2.8 Trigger Component

serves to receive a signal from another component (i.e. the drag compo-

nent) and process it in a custom function.

Blueprint: Comp_Trigger

Interface: Comp_StateComponent_Trigger

Settings: none

Sounds

• Sound Trigger - non-looping sound played, when the trigger signal

is received

Events:

• Component Triggered - toggles when the trigger signal is received

3.2.9 Values Component

serves to receive and save an array of integers. The values component is

specifically designed to interact with the selection menu component (see

section 3.1.1) to create menus with a depth of one. Contrary to previous versions, the values
component is now equipped with a single
level integer interface (see section 4) and can
only receive one integer value

Blueprint: Comp_Values

Interface: Interface_Integer

Settings:

• Values Map - matches each supported integer to a name and button

to be used in the selection menu or a similar custom made menu

– Value - integer of the entry

– Name - I18n struct corresponding to the name used for the cur-

rent entry

– Button - button struct allowing to define a texture or color for

the selection button matching the entry

• Current Index - determines the starting from the integers defined in

the values map

Events:

• Value Changed - toggles whenever a new value is selected from the

array

• Value Changed In Editor - toggles whenever a new value is selected

from the array in editor

3.2.10 Velocity Component

Figure 24. Using Velocity Component.

receives the stats of a movement

Blueprint: Comp_Velocity

Interface: Interface_StateComponent_Velocity

Settings:

• Velocity - determines the starting values of the velocity struct

– Distance - states the current distance of the moved object

– Percentage - states the current percentage of a predetermined

movement along an angle, axis or spline.

– Velocity - states the current velocity of the movement

Events:

25

• Velocity Changed - toggles when a value of the velocity struct is

changed

• Velocity Changed In Editor - toggles when a value of the velocity

struct is changed in editor

3.2.11 Visual Component For more information on the structs gov-
erning the looks and materials sets of the
visuals component have a look at section
7.3.

manages the appearance of an actor including meshes, materials and the

information given about the actor by UI elements. Each entry in the visual

component creates a unique look that consists of one mesh and a number

of material sets for that mesh. Thus, the visual component provides now

an unmatched flexibility.

Blueprint: Comp_Visual

Interface: Interface_Integer_MultiLevel

Settings:

• Name - contains the key and I18n data table of the title of the HUD

button that toggles the visuals component If no datatable is entered or the key is
missing the key itself is displayed in the
application.

• Meshes - contains an element for each look of the actor

– Static Mesh - states the static mesh of the actor in this look.

– Skeletal Mesh - states the skeletal mesh of the actor in this look.
 You can insert either a static mesh or
a skeletal mesh. Never both or a static
mesh in one element and a skeletal mesh
in another.

 All materials of the mesh specified above
have to be entered to create a set of materi-
als even if they do not change.

– Materials - contains an element for each set of materials this

mesh can appear in.

∗ Name - I18n struct defining the name of the material set

∗ Materials - array contaning an entry for each material used on

the mesh governing the look.

∗ Sound - non-looping sound assigned to this particular material

set

– Button 2D - states the name, I18n data table and color or texture

of the button to access this look. If no datatable is entered or the key is
missing the key itself is displayed in the
application.

– Data Asset - specifies the data asset describing this look.

– Sound - non-looping sound assigned to this particular look

• Component Tag to Search - refers to the tag of the mesh that is

affected by the visuals component.

Reminder

The visuals component can only af-
fect one mesh at a time. In case
multiple meshes should be changed
or shown with different materials, one
visual component must be added per
affected mesh.

Sounds

 Its not recommended to use the general
sound settings in combination with the in-
dividual assigned sounds in the maps

• Sound Material Change - general non-looping sound played when-

ever a material set is exchanged

• Sound Mesh Change - general non-looping sound played whenever

the look (including the mesh) is changed

Events

• Visual State Changed - toggles whenever the look or material set is

changed

3.3 Snapping Components

The snapping components group includes all components necessary for

the snapping feature that allows a grabbed object to automatically place

itself on a planar surface or attach to an anchor upon release. Both ”snap

to surface” (Figure 25) and ”snap to anchor” (Figure 26) require a careful

26

setup to function properly.

The Framework provides two types of connector components that enable

a grabbed actor to search for suitable locations to snap to.

Anchors components collaborate with the anchor connector component

by providing a location and rotation for attaching as well as selecting

suitable anchor connector components using tags.

3.3.1 Surface Connector Component

Figure 25. Snap to surface

Determines if and how an actor snaps to planar surfaces. The forward

vector of the surface connector component indicates which part of the

actor is supposed to attach to the surface.

Blueprint: Comp_Connector_Surface

Settings:

• Rotate On Surface - enables the actor to automatically align to the

surface.

• Should Be Active Even With Physics - allows the actor to snap despite

physics

• Allow Physics After Snap - reactivates physics after snapping

• Requires Tag - enables the component to recognize surfaces by tag Without a tag specified, anything with an
impact angle between 120 and 60° to the
search trace constitutes as planar surface.

• Wall Rotation Adjustment - compensates the deviation of the pivot

of the mesh from what the surface connector expects

• Search Distance - defines the range in which you want the surface

connector to search for surfaces.

Sounds:

• Sound Location Found - non-looping sound that is played whenever

the connector finds a suitable surface for snapping

Events

• Connector Attached - toggles when the connector is attached to a

suitable surface

• Connector Detached - toggles when the connector is detached to from

a suitable surface

Setup: Snap To Surface

All logic for the snap to surface functionality is encapsulated in the surface
connector component. However, snapping is a complex process which needs
careful setup to work properly. Here are the most important concepts to
consider when setting up the snap to surface functionality:

• Positioning - the surface connector component needs to be positioned
so its forward vector is orthogonal to the part of the actor that is
supposed to touch the surface after the snap (a vector component
can easily be used for visualization) and enter settings.

• Settings Combinations - snapping is initiated when a grab is released
and therefore heavily influenced by the release type of the grab com-
ponent (see section 3.1.3) The following settings combinations are
recommended:

– Release Type: FreePlacement - set ”Should Be Active Even With
Physics” and ”Allow Physics After Snap” to FALSE

27

– Release Type: Physics - set ”Should Be Active Even With Physics”
to true and ”Allow Physics After Snap” to FALSE to place actors
on the wall or ceiling

– Release Type: Physics - set ”Should Be Active Even With Physics”
and ”Allow Physics After Snap” to true to place actors on the
floor

• Surface Tags - a consistent tag system on the surfaces in the map
enables the surface connector to select suitable surfaces, but is not
necessary for the surface connector to function.

• Already Attached Instances - this is only necessary if an actor should
be attached to a surface upon loading the level. In this case:

– On the Instance - enter the surface actor this instance of the
actor is attached to

– In Case the Surface Actor Has Various Meshes - enter the tag of
the mesh the actor should be attached to (none means the root
component)

– When Using a Socket - specify the socket, too

3.3.2 Anchor Connector Component

Note

In case of anchor vs surface the anchor
is always preferred.

Determines if and how an actor snaps to an anchor component on

another actor. The position and rotation of the connecting actor is fully

defined by the alignment of the forward vectors of the anchor connector

component and the anchor component as shown in Figure 27.

Blueprint: Comp_Connector_Anchor

Settings:

• Search Distance - defines in which range the anchor connector searches

for suitable anchor components.

• Search Radius - adjusts the width of the search trace. Don’t make the search radius too small
else it will be very tedious for players to
attach actors to each other, since the con-
nector will not find an anchor even in close
proximity.

• Connector ID - matches the connector to the anchor it is intended

for

Sounds:

• Sound Location Found - non-looping sound that is played whenever

the connector finds a suitable anchor for snapping

Events

• Connector Attached - toggles when the connector is attached to a

suitable anchor

• Connector Detached - toggles when the connector is detached to from

a suitable anchor

3.3.3 Anchor Component

Specifies where another actor can attach to the actor and which actors are

suitable. The anchor component also indicates the position and rotation

of the attaching actor as shown in Figure 27. Anchor components can also

be added to character pawns creating body slots, that enable the player

28

to attach actors to the pawn.

Blueprint: Comp_Anchor

Settings:

• Sphere Radius - determines the size of the collision sphere, that al-

lows the trace of the anchor connector component to find the anchor

• Connector IDs To Allow - contains an element for each connector ID

(see section 3.3.2) that should be attachable to the anchor. Anchors can have multiple entries for
connector IDs to allow, so a variety of actors
can be attached to the same anchor.

• Connector Should Attach - ensures the actors stay attached to each

other after release

 If Connector Should Attach is not enabled
the connected actor may fall to the ground
after snapping, when physics is activated.

• Allow Physics - reactivates physics after the snapping process

 If the actor is attached physics is activated
for the whole construct, meaning it could
tilt when the mass center was changed by
attaching an actor.

• Anchor Deactivated - temporary prevents the use of this anchor

Sounds:

• Sound Attach - non-looping sound that is played whenever a con-

nector is attached to the anchor

• Sound Detach - non-looping sound that is played whenever a con-

nector is detached from the anchor

Events

• Connector Attached - toggles when a connector is attached to the

anchor

• Connector Detached - toggles when a connector is detached from the

actor

3.3.4 Attach Component

Keeps record of which actor is attached to the actor

Blueprint: Comp_Attach

Settings: none

Events:

• Actor Attached - toggles whenever an actor is attached transmitting

a reference to the attached actor

• Actor Detached - toggles whenever an actor is detached

Figure 26. Snap to Anchor/Attach

Figure 27. Anchor and connector.

Setup: Snap To Anchor

The snap to anchor functionality implements the careful positioning of
two actors (one grabbed, one stationary) to each other, so the grabbed
actor can snap (and attach) to a specific position on the stationary actor.
This requires the setup of at least two elements: The Anchor Connector
Component, which is owned by the grabbed actor that should snap upon
release, and the Anchor Component, that is owned by the stationary actor
that other actors should be able to attach to.
As with the surface connector component the anchor connector component
and the anchor component implement several functions including:

• Positioning - both the anchor and the anchor connector need to be
placed with their forward vector orthogonal to the surfaces where the
actors should attach, since the snap position is calculated by aligning
both vectors (use a vector component for visualization).

• Connector IDs - to limit which actor should attach to which each con-
nector is assigned an ID. Only anchors with this ID in their Connector

29

IDs To Allow array will attach the actor.
• Attach - the logic for attaching an actor after snap is encapsulated

in the anchor. To keep track of attached actors however, the attach
component is necessary.

• Additional Setup - is only necessary if actors should be attached to a
surface upon loading the level. In this case:

– On the Instance - enter the actor this instance of the actor is
attached to

– In Case the Actor Has Various Meshes - enter the tag of the mesh
the actor should be attached to (none means the root component)

– When Using a Socket - specify the socket, too

3.4 Multiplayer Components
Replication Component

Actor Replication
Component
Component Replication
Component

Multiplayer applications are a special challenge and the AF Core cannot

provide a solution for every issue, that is connected with multiplayer. For

now we concentrated our efforts to provide a consistent and performant

replication system by equipping all components to replicate as well as

provide a few extra components to handle movement replication.

3.4.1 Base Replication Component

serves as parent component for the more specialized replication compo-

nents. The base replication component is not meant to be used in an

application.

Blueprint: Comp_Replication

Settings:

• Enabled - can be used to temporarily disable the component

• Interp Speed - adjusts the interpolation to show a clean movement

of the replicating actors to the new position forwarded by the actor

replication component

• Tolerance - determines the minimum distance an actor must be moved

to activate the replication process

• Tick Interval During Movement - interval in which a currently mov- This cannot be checked every tick since
that would exceed the capabilities of most
hardware.

ing actor transmits its location for replication

• Tick Interval Without Movement - interval in which a currently sta-

tionary actor checks for movement

Events:

• New Transform Set - toggles whenever the replication component

needs to change the transform

3.4.2 Actor Replication Component

replicates the actor’s position in a multiplayer application. The actor

replication component detects, if an actor is moved, and sends the new

position constantly to the server and other clients. For additional information see section 6

Blueprint: Comp_Actor_Replication

Settings: no additional settings compared to parent

30

3.4.3 Component Replication Component

Similar to the actor replication component the component replication

component tracks the relative position of a moveable component of an

actor and sends it to the server for replication. For additional information see section 6

Blueprint: Comp_Comp_Replication

Settings:

• Component Tag - serves to identify the component that is subject to

the replication process

Please note, that both replication components are only indispensable to
replicate non-predetermined motion and physics. Consequently, it is not
necessary to add a replication component to every moving actor or com-
ponent. For more details see section 6.2.

3.5 UI Components

Note

Many UI elements of the AF Core are
very plain. They mainly serve as basis
for more sophisticated UI elements,
that can be build by the developer or
purchased with the AF Extensions.

The AF Core already provides the basis for a great variety of UI el-

ements. Most of them relying on components for their functions and

content. As a matter of course, UI elements differ greatly for each appli-

cation or environment. Consequently, each UI component has a limited

set of actors they are supposed to be added to as stated in the individual

description of each component.

3.5.1 Menu Pallet Component

specifies the menu level DA (see section 7.1.2) of the menu level that can

be loaded using the menu and settings pallet. For more information see section 8.2.3.

Blueprints: Comp_Pallet_Menu

Suitable Actors: VR-Pawns, Board Actors

Settings:

• Menu Level - specifies the level data asset of the menu level that

should be loaded with the pallet

3.5.2 Panel-based Menu Components Panel Menu Component
Large Panel Menu
Component
Small Panel Menu
Component

provide the content and basic settings for the panels of a panel based

menu (see section 8.2.2) The Comp_PanelMenu serves as a parent class

only. The two child classes implement the two major designs that can be

chosen for the panel based menu, large, vertical panels or small, tile-like

panels.

Blueprint: Comp_PanelMenu Settings:

• Currently Centered Index - allows to specify a panel that is already

expanded upon creation This does not mean that the panel is
necessarily at the center of the menu right
now.
 If you dont want any panel to be ex-
panded, set the value to -1.

• Spawn Panel at Start - spawns the panel based menu, when the level

is loaded

Events:

• Panel Functionality - can be used to implement widget functionalities

on the panel for improved replication

31

Large Panel Menu Component

Figure 28. Large Panel Menu, center: 1.

determines the content and appearance of the panels of a large panel

based menu (see Figure 28)

Blueprint: Comp_PanelMenu_Large

Suitable Actors: BP_Demo_LevelMenu_Large

Content:

• Panels - array of large panel menu data assets with an entry for each

panel the menu is supposed to have

Additional Settings:

• Centered Index - defines which pallet is at the center of the menu

upon creation

• Distance Between Tiles - defines the distance between the panels

Small Panel Menu Component

Figure 29. Small Panel Menu, 3 per row.

 The small panel based menu does not
support scrolling. Thus, all panels have to
fit the given space.

determines the content and appearance of the panels of a small panel

based menu (see Figure 29)

Blueprint: Comp_PanelMenu_Small

Suitable Actors: BP_Demo_LevelMenu_Small

Content:

• Panels - array of small panel menu data assets with an entry for each

panel the menu is supposed to have

Settings

• Items Per Row - defines how many small panels are shown per row

• Tag Of Custom Forward Location - determines the location and ro-

tation of the expanded panels.

• Distance Between Rows - defines the distance between the rows of

panels

• Distance Between Columns - defines the distance between the columns

of panels

3.5.3 Tiny Display Component

Figure 30. Tiny Display UI.

enables the actor to spawn a tiny display when grabbed by the laser

motion controller describing the actor with a name or short text and an

image (see Figure 30).

Blueprint: Comp_TinyDisplay

Suitable Actors: all actors

Settings:

• Name - contains the key and I18n data table referring to the name

or a description of the actor

 If no datatable is entered or the key is
missing the key itself is displayed in the
application.

• Image - contains the texture corresponding to the actor

• Should Spawn - temporarily disables spawning the tiny display

3.5.4 Widget Component

allows actors to display a widget. The widget component expands the

Unreal Engine inherent widget with additional logic to handle player

interaction especially with the VR pawns. Don’t confuse the widget component with
the window component. The widget com-
ponent only enables the display of a wid-
get. The window component handles the
spawning of an actor owning the widget
component (among others).

32

Blueprint: Comp_Widget

Settings:

• Recursive Widget Selection - widget input implementation designed

for the Advanced Framework

• Interaction Component Based Widget Selection - UE in-built imple-

mentation for widget input All widgets used in the AF Core examples
use the recursive widget selection to imple-
ment player-widget-interaction.

• Initial Tab - defines which tab is open when a multi-tapped widget

is spawned

User Interface

• Widget Class - defines the widget displayed

Events:

• Widget Functionality - can be used to implement widget functional-

ities on the actor for improved replication

To use the recursive widget selection implementation all widgets need to
be of the type Widget_Base. For additional information see section 8.1.

3.5.5 Window Component

spawns an info window actor that displays a widget the player can

interact with.

Blueprint: Comp_Window

Settings:

• Window - matching the window actors to be spawned with locations

referred by tags for manual placing For automatic placing enter None

• Use Root Location For Positioning - uses the root location of the actor

instead of the impact location for the auto-positoning feature of the

window component.

Sounds:

• Sound Spawn - non-looping sound played when the info window

actor is spawned

• Sound Despawn - non-looping sound played when the info window

actor is deleted

Events:

• Window Butten Pressed - serves to implement widget functionalities

on the actor itself for improved replication

3.5.6 Mini Tag Component

Figure 31. Mini tags with different settings.

spawns a mini tag actor that displays a short description and is connected

to an actor with a straight line.

Blueprint: Comp_MiniTag

Settings:

• Line - defines the design of the line connecting the mini tag to its

corresponding actor

– Has Line - determines if a line is shown

 If Has line is set to FALSE all settings
regarding the line are obsolete.

33

– Tag of Component With Socket - specifies the mesh component

with the line attach socket

– Socket to Attach Line - determines the socket the line is attached

to

– Line Location - specifies the relative location to the actor where

the line ends if no socket is specified

– Stay Attached - enables line to stay attached to the socket when

the actor is moved (not relevant for line location)

– Line Start Scale - defines the width of the line at the actor

– Line End Scale - defines the width of the line at the mini tag

• Alignment - determines where the line connects to the mini tag Both alignment options together describe
an unequivocal connect position of the line.– Horizontal alignment - specifies where the line connects to the

tag horizontally

– Vertical alignment - specifies where the line connects to the tag

vertically

• Text - specifies the content of the mini tag

– Text Size - determines the font size of the text

– Text - contains the key and I18n data table of the description

displayed in the mini tag. If no datatable is entered or the key is
missing the key itself is displayed in the
application.

• Border - designs the border of the mini tag

– Border Height - width of the line at the edge of the mini tag

– Draw Size - size of the widget that displays the text

3.6 Pawn Components

The AF Core contains a number of components that can only be used by

pawns. They define the pawn controls or UI elements. However, since the

Advanced Framework supports various environments like VR, desktop

or mobile, not all pawn components can be added to every pawn. Pawn

restrictions are stated in the description of every component.

3.6.1 Controls Component

The controls component contains all motion controller settings including

presets, movement and teleport. In consequence, the controls component

can only function on a VR pawn.

Blueprint: Comp_Controls

General Reminder

With the introduction of the controls
component the controls are no longer
level specific but pawn specific. Conse-
quently you are going to need a set of
different pawns if you want to change
controls from level to level. For more
information have a look at section 5.3.

 Upon starting handtracking the controls
presets are completely overridden by the
hand tracking function maps below.

 Some gestures have to be defined for the
left an right hand separately, since they are
non-overlying mirror images.

 Make sure you do not use any thumbstick
based teleport controls for handtracking.

Figure 32. Teleport trace with projectile.

Pawn Type: VR

Controller Settings:

• Controller Set - defines which motion controllers are spawned by the

pawn for the left and right hand

• Hand Tracking Controller Set - defines which controllers are used

when hand tracking is active

• Default Preset - specifies which preset data asset is used as fallback

if the HMD could not be identified

• Controls Presets - maps a controls preset to each supported HMD

(see section 7.1.1)

34

• Hand Tracking Function Map - matches gesture presets (see section

?? with a controller function similar to key mapping for normal

controls

– Left Hand Gesture Function Map - assigns gesture presets for

the left hand to controller functions

– Right Hand Gesture Function Map - assigns gesture presets for

the right hand to controller functions

• Handtracking Preset - preset data asset that defines the teleport mode

during handtracking

Haptics Settings:

• Haptics - determines if the controller provides haptic response

Teleport Settings:

• Teleport Mode - determines which locations are available for teleport

– TeleportFree - the teleport location can be selected freely on flat

surfaces, no teleport areas necessary

– TeleportComponent - searches for the teleport component on the

teleport area or teleport point actor (see section 2.3)

– NavMesh - uses the navigation mesh of the Unreal Engine to

standard for suitable teleport locations

• Teleport Search Type - specifies how the trace searching for suitable

teleport locations works

– Straight - trace behaves like a straight line

– Projectile - trace follows a trajectory toward the floor

• Teleport Time - adjusts how long a teleport takes

• Use Teleport Motion - determines how the movement of the pawn

during the teleport is shown to the player

– None - no motion is shown

– Indication - activates a zoom effect during teleportation

– FullMotion - displays the full movement of the pawn from the

teleport starting location to the teleport target location

Movement Settings:

• Movement Style - specifies the settings for direkt movement of the

pawn according to the button mapping in the controls component

Figure 33. Ghost movement: walk.

Figure 34. Ghost Movement: fly.

– Fluent - the pawn move continuously, prone to cause motion

sickness

– StopMotion - to avoid motion sickness the players vision fades

in and out, while the pawn moves

– Ghost - the player moves a ghost representation of the pawn to

the desired area of the map and upon finishing the movement

the pawn is moved directly to the ghost location

• Movement Direction - describes how the pawn is controlled during

movement

– Direction From Camera - the pawn takes its forwards direction

from the forwards direction of the camera

– Direction From Controller - the pawn moves according to the

direction in which the controller points

35

– Direction Relative To Controller Location - moves the pawn ac-

cording to the current controller position relative to the controller

position at the start of the movement

• Stop Motion Interval - specifies the time in seconds between 2 images

of a stop motion movement, only relevant for stop motion movement

style

• Movement Speed - determines the movement speed of the pawn

• Move With Fade - enables fade to black for movement, not recom-

mended for fluent movement

Rotation Settings: Available Controller Functions

• Select
• Grab
• Ping
• Pause
• RadialMenu1
• RadialMenu2
• ToggleFly
• Teleport
• Move
• MoveForward
• MoveLeft
• MoveRight
• MoveBackward
• TurnLeft
• TurnRight
• ResetOrientation

• Rotation Type - defines how the rotation is implemented

– Fluent - rotates the pawn fluently as long as the rotation function

is active

– Step - rotates the pawn by a step of a given angle every time the

rotation function is initiated

• Rotation Fluent Degrees - defines the velocity the pawn rotates, only

relevant for the fluent rotation type

• Rotation Step Degrees - angle in degree that the pawn is rotated for

each rotation step, only relevant for the step rotation type.

• Rotate Step Fade - enables camera fade during step-wise rotation

• Rotation Step Duration - determines the time in seconds each rotation

step takes

3.6.2 Radial Menu Component

The main purpose of the radial menu component in the Advanced Frame-

work is controlling the pallet UI element (see section 8.2.3). However, the

button set spawned by the radial menu component can also be utilized

for other means by designing appropriate buttons.

Blueprint: Comp_RadialMenu

Pawn Type: VR

Settings:

• Radial Menu 1 - contains an array of button blueprints that should

be spawned upon opening the radial menu.

• Radial Menu 2 - contains an array of button blueprints that should

be spawned upon opening the radial menu. The radial menu 2 slot serves for creating
different radial menus for the left hand and
right hand controller for example.

Figure 35. Radial Menu.

Currently Implemented Button Types

• Pallet Button - spawns a pallet UI element that corresponds the button
• Spawn Button - spawns an actor like a weapon or a device.

3.6.3 Touch Component

registers touch input and transmits it to the mobile pawn for processing.

Blueprint: Comp_Touch

Pawn Type: Mobile Pawn

Settings:

Figure 36. Touch Controls Overview.

 If no datatable is entered or the key is
missing the key itself is displayed in the
application.

Available Frames

• HUD_Widget_Frame_Bottom_Bar

• HUD_Widget_Frame_Bottom_Right

• HUD_Widget_Frame_Left

• HUD_Widget_Frame_Overlay

• HUD_Widget_Frame_Top_Bar

36

• Max Tap Time - maximum time in seconds that allows a touch to be

registered as tap

• Max Double Tap Time - maximum time in seconds that can be be-

tween to taps if they are to be registered as double tap

• Swipe Sensitivity Threshhold - the minimum amount of pixels the

finger has to move for a swipe to be recognized.

• Hold Time - time in seconds until hold is registered

3.6.4 HUD Component

defines the content of the HUD in screen applications. For more infor-

mation on the HUD management in the Framework see section 8.2.6.

Blueprint: Comp_UI_HUD

Pawn Type: Mobile Pawn, Desktop Pawn, Asymmetric Pawn

Settings:

• HUD - contains an entry for each HUD element

– Name - contain the key and I18n datatable that define the label

of the HUD element

– Widget - determines which widget is used for the HUD element

– Frame - determines in which customizable slot of the HUD the

widget is presented. For a list of frames have a look at the

margins and for their position on-screen see Figure 65

3.7 Info Components

Info components serve to save and provide dynamic information that can

be changed during runtime in contrast to data assets which are static

3.7.1 Player Info Component

is used by the player state to save individual information about one

player except the player index.

Blueprint: Bp_PlayerInfo_Basic Player Stats:

• Player Color - color assigned to the player

• Player Name - supposed to save the name entered by a player in a

multiplayer scenario

3.8 Miscellaneous Components

The miscellaneous components are a collection of component of various

functions that cannot be sorted into one of the other groups due to their

unique functionalities.

3.8.1 Delete Component

Allows the deletion of the actor.

Blueprint: Comp_Delete

Interface: Interface_Deletable

Settings:

• Handle By Interface - overrides the component’s logic for a cus-

tomized function on the actor using the deletable interface

• Transition Duration - adjusts how long the deletion process takes

37

• Curve - describes change of the scale of the actor during the delete

process The curve defined here is stretched and
compressed according to the duration de-
fined above.

Events:

• Before Delete - allows preparatory functions to execute before the

delete (i.e. animations)

• Appear Finished - toggles when the animation that the delete com-

ponent contributes to a spawn is finished

3.8.2 Orbit Component

Figure 37. Position and Size of Frames.

 The pawn can rotate 360° around the
z-axis of the orbit component.

The orbit component allows the pawn to move around an actor as if in

an orbit. It does not however, move the pawn automatically. It rather

changes temporarily pawn movement and navigation.

Blueprint: Comp_Orbit

Settings:

• Pitch Range - limits the pitch angle of the pawn position

• Zoom Range - defines the maximum and minimum radius of pawn

position around the orbit component

3.8.3 Spawn Actor Component

spawns the transmitted actor in a multiplayer compatible fashion.

Blueprint: Comp_SpawnActor

Note

Both spawn components work inde-
pendently and each is able to imple-
ment and replicate the spawn process.

• Spawn Actor Component -
straight up spawns an actor

• Spawn Location Component -
handles the complete logic of a
spawner with additional effects
upon spawn and a respawn when
the actor has been removed

Settings: none

Sounds:

• Spawn Sound - non-looping sound that is played whenever an actor

is spawned

Events:

Figure 38. Code Example Spawner.

• Actor Spawned - toggles when the actor has been spawned

3.8.4 Spawn Location Component

spawns the transmitted actor in a spawner and manages the spawner

functionalities.

Blueprint: Comp_SpawnLocation

Settings:

• Size - scales the object, so it fits inside the spawner

• Use Spawn Particle - displays a particle effect during spawn

• Use Rotation - rotates the spawned actor after spawn

• Auto Respawn - each detached actor is immediately replaced by

another actor of the same type

Sounds:

• Sound Spawn - non-looping sound played whenever an actor is

spawned

Events:

• New Actor Spawned - toggles whenever a new actor has been spawned

• Actor Detached - toggles when the spawned actor is taken out of the

spawner

38

Setting up a Spawner

To create a spawner add the component to the blueprint and in the event
graph call the component´s Spawn Actor event. (see Figure 38).

3.8.5 Spectator Component

The spectator component allows an actor to show on the computer screen,

what the its camera sees. The owning actor might be a pawn like the

asymmetric pawn (see section 5.3.5) for example, but also a security

camera or any other actor in the application.

Blueprint: Comp_Spectator

Figure 39. Spectator Component Example.

Figure 40. Vehicle Component.

Settings:

• Spectator Screen Size - resolution in ptx of the live feed the spectator

component provides

• Key - provides an identifier for each spectator component in the level

3.8.6 Vehicle Component

The vehicle component is added to vehicle-type actors to control the

entering and exiting of the pawn into the vehicle. Moreover, the vehicle

component handles the movement restrictions of the pawn as long as it

is placed inside the vehicle.

Blueprint: Comp_Vehicle

Transition:

• Transition Duration - determines the time in seconds that the move-

ment of the pawn from its current location to the in vehicle location

takes

• Fade - enables the use of a camera fade during the transition

– No Fade - disables camera fades

– Fade In - uses camera fades for entering the vehicle only

– Fade Out - uses camera fades for exiting the vehicle only

– Fade In And Out -uses camera fades for entering and exiting the

vehicle

• Motion - defines how the the movement of the pawn from its current

location to the in vehicle location is presented to the player

– None - shows no movement of the pawn

– Indication - shows the beginning of the movement before cutting

camera

– Full Motion - shows the full movement of the pawn Can not be combined with camera fades.

 The vehicle component transports the
pawn between the locations. It does not tele-
port the pawn, meaning that movable actors
in the way of the pawn can be knocked over
or similar.

Exit:

• Tag Of Exit Component - specifies which scene component of the

actor serves as target location for exiting the vehicle (see margin)

Sounds:

• Sound Enter - non-looping sound played when the pawn is trans-

ported to the vehicle component positon

• Sound Exit - non-looping sound played when the pawn is trans-

ported from the vehicle component location to the exit location

39

Info Box - Vehicle Comp Setup

The vehicle component needs handles the transition of the pawn between
two locations:

• In Vehicle Location - is the location of the vehicle component relative
to the mesh of its owning actor and constitutes the vantage point of
the pawn, when placed in the vehicle

• Exit Location - is the location of an additional scene component
relative to the mesh of the actor. The exit location specifies where the
pawn is placed upon exiting the actor. The exit location is indicated
to the vehicle component by its individual tag.

3.8.7 Video Component

The video component greatly facilitates the set up for showing a video

file or a streaming a video on a screen or similar in the application. In its

default state the video component is set up with a plane as static mesh.

However, the static mesh can be changed ad lib.

Blueprint: Comp_Video

Source:

• Video Source - defines which type of video source the component

should use

– Stream Media Source - streams the video from the URL regis-

tered below

– File Media Source - uses a video file in the project as source

• Source URL - states the URL from which the video should be streamed The source URL is not relevant for the ”file
media source” setting.Required:

• Media Sound Component - manages playing the sound of the video

– Component Tag to Search For - Tag of the sound component

(Unreal inherent) which should play the sound of the video

– Trigger Also Self - informs the video component that the sound

component is on the same actor

• Media Texture - renders the video file Each Video needs its own Media Texture.

• Material Face - Index of the material which should display the video

in the material set of the static mesh of the video component

Info Box - Video Set Up

The video component manages most of the tedious steps that are necessary
to show a video in an Unreal application. After adding it to an actor only
3 additional parts are necessary:

• Mesh and Material - the default mesh of the video component is a
16:9 plane with a dark material that is replaced by the media texture
upon activating the component

• Media Texture - create an individual media texture for the actor by
duplicating the existing media texture.

• Sound - add the Unreal inherent media sound component to the same
actor and provide it with a tag for reference

40

The video component can be toggled in the same way as the active com-
ponent or similar state components.

41

4 INTERFACES

Interfaces provide a standardization for the communication between com-

ponents or other functions of the Framework. Each interface defines an

individual data type that can be received and transmitted by this inter-

face.

4.1 State Component Interfaces

All state components are adjusted to work with interfaces and have one

assigned interface. All interaction components use the state components’

interfaces to interact with state components. State component interfaces

come in two categories:

• Unleveled Interfaces - accept only one single values of their corre-

sponding data type

• Multileveled Interfaces - accept arrays of their corresponding data

type and support the construction and transfer of tree-like array

structures Binary Interface Components

• Active Component

• Open Component

• Highlight Component

• Window Component

4.1.1 Components With Binary Interface

transmits a Boolean value.

Category: Unleveled

Blueprint: Interface_StateComponent_Binary

Accepted Data: 1 Boolean

4.1.2 Integer Interface Components With Integer Interface

• Visual Componenttransmits an array of integers

Category: Multileveled

Blueprint: Interface_StateComponent_Integer_MultiLevel

Accepted Data: 1 array of integers

4.1.3 Integer Interface Components With Integer Interface

• Values Componenttransmits an integers

Category: Unleveled

Blueprint: Interface_StateComponent_Integer

Accepted Data: 1 integer

4.1.4 Percent Interface Components With Percent Interface

• Percentage Componenttransmits a float value.

Category: Unleveled

Blueprint: Interface_StateComponent_Percent

Accepted Data: 1 float

4.1.5 Color Interface Components With Color Interface

• Color Componenttransmits a color struct consisting in 3 float values.

Category: Unleveled

Blueprint: Interface_StateComponent_Color

Accepted Data: 1 linear color struct

42

4.1.6 Name Interface Components With Name Interface

• Name Componenttransmits a name value.

Category: Unleveled

Blueprint: Interface_StateComponent_Name

Accepted Data: 1 name variable

4.1.7 Trigger Interface Components With Trigger Interface

• Trigger Component

• Drag Component

transmits a trigger signal

Category: Unleveled

Blueprint: Interface_StateComponent_Trigger

Accepted Data: none

4.1.8 Velocity Interface Components With Velocity Interface

• Velocity Componenttransmits a velocity struct consinsting in 3 float values comprising the

percentage, velocity and distance.

Category: Unleveled

Blueprint: Interface_StateComponent_Velocity

Accepted Data: 1 velocity struct

4.2 Interaction Interfaces

Interaction interfaces are support the data transfer between interaction

components and the actor. Added to the actor they are mainly supposed

to transmit settings of the interaction component to the actor.

4.2.1 GazeView Interface

Components: GazeView Components

Blueprint: Interface_InteractComponent_Gazeview

4.2.2 Latchable Interface

Components: Latch Components

Blueprint: Interface_InteractComponent_Latch

4.2.3 Overlap Interface

Components: Overlap Components

Blueprint: Interface_InteractComponent_Overlap

4.2.4 Grabable Interface

Components: Grab Component

Blueprint: Interface_InteractComponent_Grabbable

4.2.5 Selectable Interface

Components: Select Components

Blueprint: Interface_InteractComponent_Selectable

4.3 Miscellaneous Interfaces

4.3.1 Deletable Interface

Components: Delete Component

Blueprint: Interface_Deletable

43

4.3.2 Highlightable Interface

Components: Highlight Component

Blueprint: Interface_Highlightable

4.3.3 Grabbing Actor Interface

Enables an actor to grab another actor. Each actor that should be able

to grab another act needs a grabbing actor interface including pawns or

motion controllers.

Blueprint: Interface_GrabbingActor

4.3.4 I18n Interface

The I18n interface enables an actor displaying text to implement the

update language function. Upon changing language settings each actor

with the I18n interface (mostly widgets) automatically changes the text to

the corresponding translation according to its I18n data table. For more

information see section 7.2.

Blueprint: Interface_I18n

44

5 ENVIRONMENTS

5.1 Pawn Hierarchy
Base Pawn

VR Pawn
Character VR Pawn

Screen Pawn
Assymetric Pawn

Assymetric Camera
Pawn
Assymetric Character
Pawn

Desktop Pawn
Character Desktop
Pawn
Camera Desktop Pawn

Mobile Pawn
Character Mobile
Pawn
Camera Mobile Pawn

The Framework relies on a quite intricate pawn class hierarchy (see scheme

in the margins) which provides customized pawns for the different en-

vironments the Framework supports including desktop, VR and mobile.

The most basic pawn is the BP_Pawn_Base which serves as parent class

for all pawns. The VR pawn is the most singular of the pawn classes,

since the VR environment requires vastly different features than the other

environments.

Many features of desktop, mobile and asymmetric game play environ-

ments however, are very similar and were therefore condensed into the

screen pawn (BP_Pawn_Screen) which serves as parent class for the

desktop, mobile and asymmetric pawn. Further sub-classes expand the

pawns features:

• Camera Pawns - do not have a virtual body

• Character Pawns - are equipped with a virtual body

Base Pawn Base Pawn
Screen Pawn
VR Pawn
...

The base pawn is the most basic pawn class of the Framework and

consolidates the common features of all pawns of the hierarchy. The base

pawn is not meant to be used in any application.

Blueprint: BP_Pawn_Base

Features:

• Camera - places the perspective to the player position

• Gazeview - establishes the camera trace for interaction with the gaze-

view component (see section 3.1.2)

• Teleportation - allows the pawn to change location and rotation and

establishes a number of variables to adjust teleportation style

Screen Pawn Base Pawn
Screen Pawn

Desktop Pawn
...

The screen pawn consolidates the mutual features of the mobile, desktop

and asymmetric pawn establishing controls without relying on the motion

controllers.

 The screen pawn like the base pawn is
not intended for use in an experience, but
merely serves as summary of the features
shared by the desktop, mobile and asym-
metric pawn.

Blueprint: BP_Pawn_Screen

Features:

• Movement - enables the pawn to navigate the experience without

relying on the controls component

• Interaction - establishes selecting, grabbing and latching without a

motion controller

• Navigation Modes - offer different navigation styles for mouse or

touchscreen

– Crosshair - uses the mouse to navigate the camera as in FPS-

games The crosshair navigation mode is only
available for the desktop pawn or the asym-
metric pawn

– Free Mouse - shows and allows free movement of a cursor that

is either controlled by the mouse or touchscreen

– Touch - specifically adapted to navigate experiences on mobile

devices The touch navigation mode can only be
used for the mobile pawn

45

5.2 Startup

Figure 41. Startup and pawn selection.

Upon starting the application the player controller checks the environ-

ment of the experience and chooses the pawn that is specified in the info

level file for this environment (see Figure 41) using the following criteria:

• VR - the VR pawn is automatically chosen when a HMD is present

upon the start of the experience and spawns motion controllers to

move and interact with the experience in VR (see section 5.3)

• Desktop - the desktop pawn serves as default environment and pro-

vides functionalities to move and interact with the experience using

mouse and keyboard (see section 5.4)

• Mobile - the mobile pawn is automatically chosen when the operat-

ing system is IOS or Android and provides functionalities to move

and interact with the experience via touchscreen (see section 5.5)

5.3 Virtual Reality

Reminder

All pawn classes described in the en-
vironment sections are supposed to be
used as parent classes for the pawns of
an application.

Figure 42. Information Flow.

The VR environment presents the developer with very specific chal-

lenges that are seldom encountered in other environments. This includes

first and foremost the representation of the real live controllers in the ap-

plication, but also movement, the implementation of UI elements without

a HUD and simulation sickness.

The Advanced Framework uses motion controllers to represent the real-

life controllers and motion components to implement most of their func-

tionalities. This requires a way to connect the button input of a real-life

controller to the functions of the motion components. This information

flow is shown in Figure 42. Each button input on the real-life controller

is transmitted through the pawn to its controls component (see section

3.6.1) which is the key element to design the VR pawn’s controls. The

controls component references a number of preset data assets that connect

the button input of the real-life controller to a controller function, which

the controls component transmits back to the VR pawn. Subsequently,

the VR pawn passes on the controller function to the motion controllers

which in turn pass it down to all motion components. Finally, the motion

component matching the controller function implements the requested

functionality.

5.3.1 VR Pawn Base Pawn
VR Pawn

Character VR Pawn
...

The VR pawn is adjusted to the requirements of VR applications. In con-

trast to the other pawns most features of the VR pawn are outsourced to

motion controllers and motion components (see sections 5.3.2 and 5.3.3).

The pawn mainly serves as vantage point of the player and to transmit

the input signals from the real-life controller to the motion controllers.

Blueprint: BP_Pawn_VR

Features:

• Motion Controllers - the VR pawn spawns a pair of motion con-

trollers upon start of the experience that implement movement and

interaction with the experience (see section 5.3.2)

46

• Input Forwarding - the VR pawn forwards all key inputs of the

player to the motion controllers

5.3.2 Motion Controllers

Motion controllers are designed to represent the physical controllers in

VR experiences. Each controller is composed of a motion controller and In all other environments the controls
are implemented by the pawn directly and
motion controllers are obsolete.

Base Motion Controller

Controller Motion

Controller

Laser Motion Controller

Pause Motion Controller

Hands Motion Controller

Left Hand Motion

Controller

Right Hand Motion

Controller

Handtracking Motion

Controller

Left Handtracking

Motion Controller

Right Handtracking

Motion Controller

Figure 43. Controller Mini Tags.

number of motion components. Since version 3.1 the motion controllers

have evolved a more complex hierarchy. Especially the hand motion

controllers are more complex now providing the possibility to design dif-

ferent controllers for each hand. Moreover, hand tracking is implemented

in two additional classes inheriting from the hands motion controller.

Base Motion Controller

serves as parent class for all motion controllers and is not supposed to be

used as motion controller in an application. It mainly manages the motion

components and transmission of controller functions or key inputs.

Blueprint: BP_MotionController

Included Motion Components: none

Motion Component Sockets

Since the controllers of various HMD are constructed very differently each
motion controller is equipped with a number of sockets to ensure that
motion components like the laser, teleport or radial menu are attached at
the correct position relative to the controller mesh.

Controller Motion Controller

equips the base motion controller with the mesh of a controller matching

the HMD and implements mini tags that display the button mapping.

Blueprint: BP_MotionController_Controller

Included Motion Components: none

Laser Motion Controller

equips the motion controller with a laser (implemented as motion com-

ponent) as main means of interacting with other actors (see Figure 47).

Blueprint: BP_MotionController_Controller_Laser

Included Motion Components:

• Laser Pointer Motion Component - see page 5.3.3

• Radial Menu Motion Component - see page 5.3.3

• Movement Motion Component - see page 5.3.3

• Teleport Motion Component - see page 5.3.3

Pause Motion Controller

The pause pawn spawns its own motion controller with minimal func-

tionalities.

Blueprint: BP_MotionController_Controller_Pause

Motion Components included: none

47

This means during the pause the controller will always match the HMD
regardless of the appearance of the controller within the level.

Hands Motion Controller

Figure 44. Hands Motion Controller

 Flip the right hand mesh along the z-axis
to create the left hand mesh.

Figure 45. Meshes for Hand-tracking

How To Set Up Hand-Tracking

Hand-tracking works completely different
from the normal VR controls. The con-
trols component on the pawn has its own
section controlling it. Here are the basic
steps to set everything up:

• Motion Controllers - Hand-tracking
has is own motion controllers. Enter
them under Hand-tracking motion
controllers on the controls compo-
nent

• Gestures - For the Hand-tracking
motion controller to recognize a ges-
ture must be defined in a gesture
data asset.

• Function Mapping - the controls
component contains a map which
assigns a controller function to each
gesture DA for each hand

• Preset DA - Hand-tracking still
needs a preset to define teleport
controls

equips the motion controller with the possibility to appear with a

skeletal mesh of a hand. However, the hands motion controller mainly

serves as parent class for all hands motion controllers.

Blueprints: MC_Hands

Included Motion Components: none

Left and Right Hand Motion Controller

provide the motion controller with the skeletal mesh of a left or right

hand and the corresponding animation blueprint.

Blueprints:

• MC_Hands_Left

• MC_Hands_Right

Included Motion Components:

• Grab Motion Component - see page 50

• Laser Motion Component - see page 49

• Ping Motion Component - see page 53

• Radial Menu Motion Component - see page 51

• Movement Motion Component - see page 51

• Teleport Motion Component - see page 51

Hand-Tracking Motion Controller

Upon start of hand-tracking the hand-tracking motion controllers sub-

stitute the original motion controllers. Hand-tracking motion controllers

can recognize gestures defined by a gesture data asset (see section ??)

and match them with controller functions as defined in the controls com-

ponent (see section 3.6.1) similar to button mapping for normal motion

controllers.

Blueprint: BP_MotionController_Hands_Tracking

Included Motion Components: none

Left and Right Handtracking Motion Controller

provides the hand tracking controller with a left or right hand skeletal

mesh that is matched to the human hands, so they can dynamically follow

the players hand and finger positions during runtime.

Blueprints:

• BP_Controller_Hands_Tracking_Left

• BP_Controller_Hands_Tracking_Right

Included Motion Components:

• Grab Motion Component - see page 50

• Ping Motion Component - see page 53

• Movement Motion Component - see page 51

• Teleport Motion Component - see page 51

48

5.3.3 Motion Components

Figure 46. Motion Component System.

Motion components apply the component system to the motion con-

trollers. Consequently, custom motion controllers can be designed in a

similar fashion as new actor classes. Motion components frequently in-

teract with other components to perform complex functionalities like

grabbing or selecting just like actor components cooperate among each

other, see Figure 46 for a schematic example. The AF Core contains overall

8 custom made motion components.

• Laser Motion Component - attaches a laser pointer to the controller

• Finger Motion Component - enables selection with the index finger

• Grab Motion Component - manages grabbing with the hands motion

controller

• Hand Laser Motion Component - more simple laser motion compo-

nent adjusted for the hand motion controller

• Radial Menu Motion Component - spawns a set of radial menu

buttons

• Ping Motion Component - spawns a visual effect to indicate actors,

direction etc.

• Movement Motion Component - allows the player to navigate the

application by moving the pawn

• Teleport Motion Component - enables the player to navigate the

application by teleporting the pawn

Laser Motion Component

Controller Functions

Most motion components implement
one or more controller functions. Upon
selecting motion components for a
controller it is necessary to ensure,
that each controller function is only
implemented on one motion compo-
nent to avoid incompatibilities.

Figure 47. Laser Motion Controller.

The laser motion component attaches a laser pointer to the controller

that emits a laser trace and provides the the player with a possibility of

remote interaction.

Blueprint: BP_MComp_Controller_Laser

Socket Preference: MComp Laser

Suitable Motion Controllers: Controller Motion Controllers

Controller Functions:

• Select - toggles the select interaction component (see section 3.1.1)

on an actor

• Grab - toggles the grab component (see section 3.1.3) and allows the

motion controller to attach the actor to itself

• LaserMode - switches laser mode (see info box below)

• Ping - spawns a visual effect at the laser impact location

Settings:

• Max. Laser Length - maximum length of the laser trace

• Max. Interpolation Distance - define from which distance between

the original trace impact location and the new trace impact location

(when the controller is moved) the laser movement is no longer

interpolated and the new location is just set instead

• Pointer Transform Interaction - sets the default laser mode

• Interpolations Speed - determines how fast the laser trace follows

the controller movement

49

• Max Grab Distance Offset - maximum distance you can move a

grabbed actor away from the pawn

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Laser Modes

Actors grabbed by the laser motion controller do not rotate with the con-
troller. Instead the player can access the transform of the actor according
to the preset data asset. The Framework provides 3 modes:

• distance + rotation: the thumbstick´s y-axis moves the actor nearer
and farther from the pawn and the thumbstick´s x-axis rotates the
actor around its z-axis.

• two axis rotation: the thumbstick´s x-axis rotates the actor around its
z-axis. and the thumbstick´s y-axis rotates the actor around its y-axis.

• distance + scale: the thumbstick´s y-axis moves the actor nearer and
farther from the pawn and the thumbstick´s x-axis scales the actor.

Grab Motion Component

Figure 48. Grabbing a Vase with L_00

Figure 49. Hand Grab Positions.

enables the motion controller to grab or latch onto actors.

Blueprint: BP_MComp_Hand_Grab

Socket Preference: none

Suitable Motion Controllers: hands motion controller

Controller Functions:

• Grab - toggles the grab component (see section 3.1.3) and latch com-

ponent (see section 3.1.5

Settings:

• Search Distance - distance from the GrabSearch Socket location on

the hand motion controller in which the motion component searches

for actors

• Search Radius - determines the radius of the search trace

• Pull Speed - defines how fast the object moves towards the hand

motion controller upon grabbing

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Additional Setup for Grab and Latch

When the VR hands try to grab or latch onto an actor, the hand searches
the mesh of the actor for sockets and relates the most suitable socket
to the motion controller. Generally, this will be the closest compatible
socket. This implementation allows the possibility for the actor to snap onto
preferred locations without having to make specific meshes with weird pivot
locations. For the VR hands to look naturally while grabbing an actor the
first 4 characters of the name of each socket must follow this convention:

X NN

In this X is either the letter L or R assigning the socket to the left VR

50

Hand (L) or the right VR Hand (R). And NN a number between 00 and
13 assigning the posture of the VR Hand as shown in Figure 49.

Radial Menu Motion Component

The radial menu motion component spawns a circular set of buttons that

can be selected either by the thumbstick at the same hand or the laser of

the other hand. For more information see section 8.3.2.

Blueprint: BP_MComp_RadialMenu

Socket Preference: MComp RadialMenu

Suitable Motion Controllers: all

Controller Functions:

• RadialMenu1 - spawns a radial menu according to the radial menu

1 settings of the radial menu component on the pawn

• RadialMenu2 - spawns a radial menu according to the radial menu

2 settings of the radial menu component on the pawn

Settings:

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Teleport Motion Component

Figure 50. Free teleport with rotation by hand.

The teleport motion component enables and controls teleportation

Blueprint: BP_MComp_Teleport

Socket Preference: MComp Teleport

Suitable Motion Controllers: all

Controller Functions:

• Teleport - executes the teleport of the pawn according to the settings

on the controls component (see section 3.6.1)

Settings:

• Max Trace Length - determines the maximum distance of the teleport

search trace from the pawn

• Max. Interpolation Distance - define from which distance between

the original trace impact location and the new trace impact location

(when the controller is moved) the laser movement is no longer

interpolated and the new location is just set instead

• Interpolations Speed - determines how fast the laser trace follows

the controller movement

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Movement Motion Component

The movement motion component enables and controls all movement

options except teleportation

Blueprint: BP_MComp_Movement

Socket Preference: none

51

Suitable Motion Controllers: all

Controller Functions:

• Walk - moves the pawn along the x- and y-axis

• Fly - moves the pawn freely along all 3 axis

• TurnLeftStep - turns the pawn to the left in steps of a given angle

• TurnRightStep - turns the pawn to the right in steps of a given angle

• TurnLeftFluent - turns the pawn to the left fĺuently

• TurnRightFluent - turns the pawn to the right fĺuently

• MoveFluentForward - moves the pawn forward fluently

• MoveFluentBackward - moves the pawn backward fluently

• MoveFluentRight - moves the pawn to the right fluently

• MoveFluentLeft - moves the pawn to the left fluently

Settings:

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Ping Motion Component

enables the motion controller to spawn a visual effect to indicate actors,

targets or directions.

Blueprint: BP_MComp_Ping

Socket Preference: none

Suitable Motion Controllers: all Incompatible with laser pointer motion
component.Controller Functions:

• Ping - spawns the visual effect

Settings:

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

Hand Laser Motion Component

The hand laser motion component is a down-graded version of the laser

pointer adjusting it for use on the hands motion controller. The laser pointer implements a number of
controller functions, that may interfere with
other controller functions designed for the
hands motion controllers.

Blueprint: BP_MComp_Hand_Laser

Socket Preference: none

Suitable Motion Controllers: hands motion controller

Controller Functions:

• Select - interacts with the select component (see section 3.1.1) on an

actor

Settings:

• Max Laser Length - determines the maximum distance laser trace

from the pawn

• Laser Start Distance - distance from the hand motion controller from

which the laser starts to search for impact

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

52

Finger Motion Component

positioned at the tip of the index finger the finger motion component

allow the hand motion controller to detect forward movement of the

outstretched index finger and interact with the select component on ac-

tors.

Blueprint: BP_MComp_Hand_Finger

Socket Preference: none

Suitable Motion Controllers: hand motion controller

Controller Functions: none

Settings:

• Preferred Socket to Attach to - defines the socket on the mesh of the

motion controller, where the laser should be attached

5.3.4 Presets

Figure 51. Button Mapping Example

Preset data assets provide the button mapping that connects a key input

to a functionality of the motion controller. The framework already pro-

vides a number of different presets for the controllers of different HMD.

For more information see section 7.1.1.

Content: see section 7.1.1.

5.3.5 Asymmetric Game Play

Asymmetric game play mixes the VR and desktop environment to allow

two players to experience a VR application when only one HMD is

available. The AF Core provides two methods to implement asymmetric

game play:

Figure 52. Spectator Mode.

• Spectator Mode - allows the implementation of vantage points from

which a second player can monitor the player using the HMD nav-

igate the application on the desktop.

• Asymmetric Pawn - spawns a complete screen pawn, that can move

and interact with the level independently controlled by mouse and

keyboard.

Spectator Mode

Spectator mode is based on the spectator component which can be added

to any actor providing additional vantage points. The camera feed of the

spectator component can either be accessed directly on the desktop or

transmitted to a in-application screen.
 Only one spectator component can be
active per level at a given time. Upon ac-
tivating another spectator component the
previous one is deactivated automatically.

Overview On Setup

• On the actor - add the spectator component and set it up according
to section 3.8.5. The spectator component itself includes a camera,
so it is not necessary to add a camera to the actor

• Activating the Camera Feed - the spectator component relies on an
event or key input for activation.

• Showing the Camera Feed - the camera feed of the spectator compo-
nent is show on the real life monitor automatically upon when the

53

component is activated. For showing camera feeds within the VR
experience create a 2D render target to create a dynamic material.

Asymmetric Pawn Base Pawn
Screen Pawn

...
Asymmetric Pawn

Character Asymmetric
Pawn

serves as a additional pawn, that is controlled by keyboard and mouse

and can navigate the experience.

Blueprint: Pawn_Screen_Asymmetric

Controls: see desktop pawn

Overview On Setup

• On the VR Pawn - the VR pawn provides the ”spawn asymmetric
pawn” function that only needs to be called and provided with an
position and pawn class

• On the Asymmetric Pawn - the asymmetric pawn is a screen type
pawn and can be provided with all components and functions that are
compatible with the screen environment

• Asymmetric Pawn Camera Feed - the asymmetric pawns vantage point
is automatically shown on the real life monitor. It can be displayed in
the VR application by using a render target as briefly described above.

5.4 Desktop

The desktop environment is the most widespread and variable of all en-

vironments supported by the Framework including (in theory) a number

of input devices like mouse, keyboard or game pad.

Desktop Pawn Base Pawn
Screen Pawn

Desktop Pawn
Character Desktop
Pawn
Camera Desktop Pawn

The desktop pawn serves as default pawn for all screen applications. The

desktop pawn (or its child classes) by now provide all functionalities to

navigate and interact with experiences using mouse and keyboard.

Blueprint: BP_Pawn_Screen_Desktop

Controls

 Game pad controls are still under con-
struction.

Figure 53. Character Desktop Pawn.

• Locomotion - the WASD keys of the keyboard move the pawn ac-

cording to the specifications of the navigation mode

• Locomotion Modes - the desktop pawn support the movement modes

sprint, crouch, jump and fly assigning the following keys

– Space - jump

– Shift - sprint (to keep sprinting hold the key)

– c - crouch (hit the key to enter/exit crouch mode)

– y - fly (hit the key to enter/exit fly mode)

• Change Navigation Mode - the alt key changes the navigation mode

between crosshair and free mouse

• Select - the pawn selects an actor by clicking the left mouse button.

• Grab/Latch - the pawn grabs an actor by holding the left mouse

button or tapping the right mouse button

54

• Rotate grabbed actor - holding the right mouse button while moving

the mouse rotates a grabbed actor.

5.5 Mobile Devices

The most notable difference between mobile and desktop environments

are the limited capacities of mobile devices and their reliance on touch

screen as main input source. Additionally the small screen can only sup-

port a minimum of HUD elements.

Mobile Pawn Base Pawn
Screen Pawn

...
Mobile Pawn

Character Mobile
Pawn
Camera Mobile Pawn

The mobile pawn is a screen-type pawn with controls adjusted for input

by touchscreen.

Blueprint: BP_Pawn_Screen_Mobile

Controls:

• Movement - a double tap on the floor teleports the pawn to the

selected location

• Camera Movement - swiping moves the camera of the mobile pawn

• Select - tab on a selectable actor

• Grab/Latch - tab and hold on a grabable/latchable actor

55

6 MULTIPLAYER

Creating a multiplayer application is an intricate task and includes lots

of issues that are outside the scope of the Advanced Framework. Thus,

this chapter is by no means a comprehensive discussion of the topic. It

mainly presents the modifications we made in the components and other

features of the AF Core to allow you to set up a multiplayer application.

This includes first and foremost replication and ownership and also a

basic lobby to set up multiplayer games.

6.1 Client Server Models and Ownership

Figure 54. Client Server Models.

The Framework supports at the moment 2 client server models:

• Dedicated Server - does not have an assigned player controller and

only hosts the game (see Figure 54, top)

• Listening Server - has an assigned player controller and hosts while

playing (see Figure 54, bottom)

Ownership basically constitutes which client if not the server can execute

replicable events including changing states, location and more on an actor.

Therefore specific interactions especially grab and latch require a change

of ownership to be executed.

Generally it is beneficial if most actors are owned by the server and changes
of ownership are kept to the absolute minimum.

The client generally owns:

• the pawn

• actors permanently attached to the pawn like the motion controllers

• grabbed and latched actors

• all actors spawned by the client

The server generally owns:

• all actors in the level (exceptions: see above)

• all actors spawned by the server

Changing Ownership

Actor ownership changes mainly when a player grabs or latches onto an
actor. In the AF Core a grabbed/latched actor is always owned by the client
of the player who executed the grab or latch. Upon release the ownership
is not restored to the previous owner to limit ownership changes.

6.2 Replication

All actors whose state, position or other properties are relevant in mul-

tiplayer must replicate to ensure synchronisation between the clients.

This includes spawning and destroying actors. The AF Core provides a

number of solutions to deal with replication in multiplayer applications.

56

Specifically the extensive use of components is intended to facilitate repli-

cation.

Regardless of the client server model and instigator all replication processes
go via the server and the amount of replication processes is strictly limited
by the network bandwidth.

6.2.1 State Components and Interaction Components

Both state components and interaction components like the select compo-

nent or the active component implement the ability to replicate providing

the owning actor is set to replicate. The component system has been

particularly adjusted to provide the basis for multiplayer applications.

This concerns especially the controls component on the pawns which

was designed to enable the clients to access the controls settings.

6.2.2 Non-predetermined Movement

The movement of actors and components is replicated by the replication

components described in section 3.4. These components were specifically

designed to replicate non-predetermined movement caused by pawns

grabbing actors or physics. They are also meant to replicate the movement

of the pawn through the level. There is no need to replicate predeter-
mined movement like the hands of a clock
or the swinging of a pendulum for example,
since predetermined movement will auto-
matically be synchronous on all clients and
the server provided it is started at the same
moment.

The replication of location and rotation by the replication components is a
very resource intensive process and should be used as seldom as possible.

6.2.3 Spawning and Deleting of Actors

Figure 55. Replication of Widget Functionalities.

Specifically the spawn process interlinks heavily with the question of

ownership, since each actor is owned by the entity instigating the spawn

process which might either be the server or a client. This has serious

consequences on the ability of the actors to replicate, since only spawn

processes instigated by the server are replicated. This is implemented

in the spawn components (see sections 3.8.3 and 3.8.4) which should be

exclusively used to spawn actors in multiplayer applications, since actors

spawned by a client only exist in this client’s instance of the application.

The deletion of an actor should be exclusively handled by the delete

component that is equipped to replicate the process.

6.2.4 User Interfaces

Regarding multiplayer applications, user interfaces present a number of

issues especially in VR. UI elements like the pallets or menu buttons

must be spawned and also frequently incorporate widgets to display text,

buttons and images. The AF Core provides a number of UI elements, For more details on UI see section 8.

however only a few of them are compatible with multiplayer.

• Full Replication - spawned by the server, no widgets

57

– Selection Menu - all buttons are spawned by the server and

as actors themselves contain a select component that replicates

normally

– Radial Menu - all buttons are spawned by the server and as

actors themselves contain a select component that replicates nor-

mally

• Partial Replication - spawned and interacted with via the server,

contains widgets

– Pallet - spawned by the server on request of the instigating

client. Furthermore, all interactions with the pallet are redirected

through the server, too, to enable all players to interact with the

pallet regardless who spawned it

– Info Window - spawned by the server on request of the instigat-

ing client, so all players can share the information provided

• No Replication - spawned by the client, contains widgets

– HUD - cannot be shared with other players

Widgets

Widgets have never been programmed to function in a multiplayer environ-
ment. Widgets can only used on clients and are unable to replicate within
themselves. Only widget functionalities that trigger functions on the actor
can be replicated via the information flow shown in Figure 55. This is an
intrinsic property of widgets the Advanced Framework cannot change.

58

7 DATA

The Advanced Framework supports a number of methods to manage

and provide static data as well as orderly data transmission. Not all data

entities especially in the categories of structs and enums are essential

for developers. Some are only used in a very specific way and better

described with the component or other entity which uses them. Others are

only of internal use. Therefore, we will limit the description of individual

data entities to the strictly necessary.

7.1 Primary Data Assets (PDA)

How To Use PDA

Primary Data Assets are basically tem-
plates which consolidate a number of
variables of any kind. To create a data
asset for a specific use case, generate
a PDA instance using the correspond-
ing PDA as reference and fill out all
variables.

Data Assets
Primary Data Assets

PDA-Instance

Primary Data Assets (PDA) are basically a prearranged set of variables

to be used to store, arrange and access a variety of information. As

a consequence, PDA fill a similar role as data tables with the added

advantage of being more intuitive to manage. The AF Core 4.1 provides

the following types of PDA:

• Preset PDA - provide the button mapping for the VR motion con-

trollers (see also sections 3.6.1 and 5.3.2)

• Panel PDA - determines the content and appearance of the panels in

the panel based menu (see also section 8.2.2)

• Level PDA - store basic information on each level like the pawns

(see also section 2.2)

• Gesture PDA - store the finger and hand positions that describe a

gesture to be used for handtracking

Building PDA

To take PDA along into a build they
have to be entered into the asset
manager in the project settings. This
is a vital step. Any PDA (not PDA
instance) even if its the child of a
registered PDA needs its own entry.
Any obmitted PDA will not make it
into the build application causing all
kinds of problems.

List of Controller Functions

• Select
• Grab
• LaserMode
• Ping
• Pause
• RadialMenu1
• RadialMenu2
• ToggleFly
• Teleport
• Move
• MoveForward
• MoveLeft
• MoveRight
• MoveBackward
• TurnLeft
• TurnRight
• ResetOrientation

Data Assets follow a hierarchy with the data asset class on the top par-

enting the primary data assets which parent PDA instances in turn. The

difference between a PDA and a PDA instance you can imagine like the

difference between an empty form and a form that has been filled in by

a person. However, for simplicity’s sake we will use the term data asset

roughly for PDA as well as PDA instances within the documentation.

7.1.1 Preset Data Assets

Preset DA provide the button mapping that connects a key input to a

controller function (see margin) of the motion controller. Consequently

presets are only of importance for VR applications.

Primary Data Asset (PDA): PDA_ControllerVR

Used in: controls component (see section 3.6.1)

Controller Settings:

• Trigger Grip - grab is triggered by the assigned and held by the

assigned button. To release the assigned button must be pressed

again.

• Holding Grip - to hold an item continuously the assigned button

must be held. Upon release of the button the grabbed actor is re-

leased, too.

• Key Mapping - contains one element for the button mapping of each

controller.

– Key - determines if the button mapping is for the left hand

motion controller or the right hand motion controller

59

– Value - contains an element that connects each key of the HMD

controller to a controller function (by name) provided by the

corresponding motion component.

Haptics And Teleport Settings:

• Haptics Multiplier - serves to adjust the intensity of haptic response

of the controller The haptics intensity changes a lot with
different HMD. Use this to keep your re-
sponse consistent for each HMD.

• Teleport Execute - specifies which button initiates the teleport to the

impact location of the trace

– OnTrigger - the trigger button initiates the teleport

– NeutralThumbstick - teleport is initiated automatically when the

thumbstick returns to its origin position Cannot be used in combination with the
NeutralThumbstick Teleport Deactivate set-
ting

– OnTeleportButtonRelease - teleport is initiated automatically when

the button assigned to change to teleport mode is released again

 This comprises that the button which
activates teleport mode must be held while
searching for the desired location.

• Teleport Deactivate - specifies how the teleport mode can be exited

– OnlyOnExecute - excludes the possibility to deactivate teleport

mode

– NeutralThumbstick - deactivates teleport mode when the thumb-

stick returns to its origin position.
 Cannot be used in combination with the
OnThumbstickRelease Teleport Execute set-
ting

• Teleport Rotation Type - specifies if and how the rotation of the pawn

during teleportation is implemented

– None - the pawn will not rotate upon teleportation

– RotateByHand - the pawn will rotate upon teleportation accord-

ing to the rotation of the motion controller towards its upright

position, see Figure 50

– RotateByThumbstick - the pawn will rotate according to the po-

sition of the thumbstick.

Figure 56. Level Data Asset.

Currently Available Preset DA

Preset DA can be used to adapt an application for different HMD. The AF
Core provides the following presets:
Oculus Preset button mapping for the oculus touch controller
Vive Preset button mapping for the vive wand controller
Knuckles Preset button mapping for the knuckles index controller
MR Preset button mapping for the windows mixed reality controller
Cosmos Preset button mapping for the Vive Cosmos controller

7.1.2 Level Data Asset

The level DA replaced the former info level files completely containing

all essential information on a level. Each level needs its own level DA,

that is referred to by the map info actor in level map.

Primary Data Asset (PDA): PDA_Level

Used In: BP_MapInfo (section 2.2)

Settings:

• Transition - determines the look of the transition screen while the

level is loaded

60

– Title - contains the key and I18n data table for the level title If no datatable is entered or the key is
missing the key itself is displayed in the
application.

– Subtitle - contains the key and I18n data table for the level

subtitle

– Skysphereinfo - specifies the texture used for the skysphere and

the fallback color if no image was found

– MinimalTransitionTime - states the time in seconds the transition

screen is shown at minimum To progress to the level as soon as it is
loaded enter 0.– Transition Class - specifies which BP_Transition actor is spaw-

ned upon loading a level (see section 2.4.2).
 If no transition blueprint is specified the
BP_Transition_Default is spawned.

• Pawn - assigns the pawns for the level depending on environment

– Default Pawn Desktop - defines which pawn is used in a desktop

environment
 If the environment could not be deter-
mined the Default Desktop Pawn is chosen

– Default Pawn VR - specifies which pawn is used, when a HMD

is present

– Default Pawn Mobile - states which pawn is used when the

operating system is Android

• Streaming Level - consolidates the maps that need to be loaded for

the level

– World Map - refers to the world map of the level Refer to each map by the full file name

– Maps To Load - contains an element for each map file, that must

be loaded for this level

7.1.3 Panel Data Asset Panel PDA
Large Panel PDA

Large Panel Level PDA
Small Panel PDA

Small Panel Level PDA

Panels DA consolidate the content of panel type widgets in the panel

based menu. The Panel PDA form a hierarchy as shown in the margins

of which only the Level Panel PDA should be used as templates for DA.

Each Level Panel DA specifies the contents of one panel of the panel

based menu (see section 8.2.2). Consequently, each level that should be

loadable from the panel based menu needs its own panel level DA. The

AF Core provides two panel designs, the small level panel and the large

level panel, which mainly differ in the collocation of its content. Recommended Resolutions

• Large: 1600x975
• Small: 800x585
• Logo: 250x115
• Cover: 650x650

Figure 57. Small Panel Example.

Small Level Panels

consist of one main panel and 2 side panels, that expand upon select.

An expanded small level panel is shown in Figure 57 with main panel

content in violet and side panel content in green.

Settings:

• Image Large01 - texture for the image on the left side panel

• Image Small01 - texture for the left image on the right side panel

• Image Small02 - texture for the right image on the right side panel

• Level Info - refers the level DA of the level that can be accessed by

this panel

• Slogan - specifies the level title on the main panel

• Details - content of the text field on the right side panel

• Logo - texture for the small image on the main panel

• Cover - texture for the large image on the main panel

• Color - background color of the panel

61

• Left Content Widget - widget displayed in the left side panel

• Right Content Widget - widget displayed inf the right side panel

Large Level Panels

consist of one main panel and one side panel, that expands upon select.

An expanded large level panel is shown in Figure 58 with main panel

content in violet and side panel content in green.

Settings:

Figure 58. Large Panel Example.

• Image Large01 - texture of the top window in the side panel

• Image Small01 - texture of the bottom left window in the side panel

• Image Small02 - texture of the bottom right window in the side panel

• Level Info - refers the level DA of the level that can be accessed by

this panel

• Slogan - specifies the level title on the main panel

• Details - specifies the left text field in the main panel

• Additional Text - specifies the right text field in the main panel

• Logo - texture for the small image on the main panel

• Cover - texture for the large image on the main panel

• Color - background color of the panel

• Content Widget - specifies the widget shown in the side panel

7.1.4 Gesture Data Assets

NOTE

1) Gesture PDA are limited to sin-
gle hand gestures although you
can define the position relative
to the other hand.

2) Some gestures are non-overlap-
ping mirror images and cannot
described in one gesture PDA
instance which works for both
hands. In these cases we recom-
mend creating a separate ges-
ture DA for each hand.

Each Gesture PDA instance defines a hand gesture via its finger and

hand position toward one of 3 points of reference. In the controls com-

ponent of the pawn (see section 3.6.1) gesture DA can be assigned to

controller functions enabling the player to perform functionalities like

select, grab and many others in hand-tracking mode.

Primary Data Asset (PDA) : PDA_Gesture

Used In: Comp_Controls (section 3.6.1)

Settings:

• Finger Requirements - array containing an element describing the

position of each finger

– Finger - defines the finger this requirement is assigned to

– Position - defines the position of the finger

∗ Extended180 - extended finger at 180° angle to the palm

∗ Extended90 - extended finger at 90° angle to the palm

∗ ContractedInward - finger contracted and touching the palm

∗ ContractedOutward - finger contracted without touching the

palm

∗ Pinch - touch the tip of the thumb of the same hand

– Toleance - deviation in cm from the standard position used for

handtracking. This covers for different hand sizes and
bad hand coordination.– Not - converts the requirement to a taboo, meaning all positions

except the one specified are accepted to create the gesture

• Hand Requirements - array containing an element describing the

hand position towards a point of reference

62

– Hand Direction - defines the direction of the hand which is used

for comparison

– Other Component - determines which entity serves as point of

reference for the hand position

∗ Pawn - uses the pivot of the pawn as reference

∗ Camera - uses the direction the pawn looks in as reference

∗ OtherHand - uses the pivot of the other hand as reference

– Relative To - defines the direction of the point of reference to

which the hand direction needs to be parallel

– Angle Tolerance - deviation in degree from the specified position This covers for different hand sizes and
bad hand coordination.– Not - converts the requirement to a taboo, meaning all positions

except the one specified are accepted to create the gesture

7.2 Data Tables

Figure 59. I18n Data Table.

Note

While it may seem unnecessary we
recommend the use of multiple I18n
data tables organized by usage of the
texts tabulated, since huge data tables
are very difficult to maintain.

The AF Core uses data tables mainly for providing the update language

function of its widgets with translations. The data tables provided for that

are called I18n data tables.

I18n Data Tables

I18n data tables are separated into rows. Each row is assigned a key which

together with the current language setting unequivocally points to one

cell of the data table which provides the text which is finally displayed

by the widget.

Basis Struct: Struct_I18n_Key

7.3 Structs

Structs combine a number of variables that are usually transmitted or

used together to a set. The Framework makes use of this concept to

standardize translatable texts, communication between components and

other functions. Many structs of the AF Core are only used internally

and are generated automatically. However, others are used especially in

the component settings. So we will provide selection of AF Core structs

here.

I18n Key Struct

Used for practically all text displays in the AF Core, the I18n key struct

enables the data table based update language function implemented in

most widgets. For more information on the I18n data
tables used for translation see section 7.2.Full Designation: Struct_I18n_Key

Content:

• Key - defines one row of a I18n data table which is used for trans-

lating the text

• Data Table - determines in which data table the function searches

for the key

63

Graphic Button Struct

Used in UI elements like the selection menu (see section 8.3.1) to define

the appearance of a button.

Full Designation: Struct_Button_Graphic_2D

Content:

• MainTexture - specifies a texture to be shown on the button Not recommended for 3D buttons.

Figure 60. Visual Structs Scheme.

 Each look must either have a correspond-
ing static or skeletal mesh. It is not possible
to mix or enter both a skeletal and static
mesh.

• Material - specifies a material for the button

• Color - defines a color for the button using the linear color struct of

the Unreal Engine

The different parts of the struct are used in succession with the material
replacing the texture if it was not found. And the color acting as ultimate
fallback in case neither a texture nor a material are defined or are found.

Text Button Struct

Used in most widgets the text button struct provides a button with a

name and texture.

Full Designation: Struct_Button_Text

Content:

• ButtonText - contains a I18n key struct to display a translatable

button name

• ButtonImage - determines the texture of the button

Visual Mesh Struct

The visuals component (see section 3.2.11) allows to provide an actor

with different looks and material sets which are defined via a set of

interlocking structs. The most basic of these structs is the visual mesh

struct which contains all necessary information on one look of the actor.

Full Designation: Struct_Visual_Mesh

Content:

• Name - I18n Struct providing a translatable name for the look

• Static Mesh - static mesh corresponding to the look

• Skeletal Mesh - skeletal mesh corresponding to the look

• Materials - array of visual material structs describing the different

material sets available for the look

• Button2D - struct defining the look of the button accessing the look

• DataAsset - data asset corresponding to the look

Visual Material Struct

Referenced in the visual mesh struct, the visual material struct serves to

describe one of various material sets belonging to one look. Each material

set is composed of all materials used for the mesh even if they do not

change between different material sets.

Full Designation: Struct_Visual_Material

Content:

• Name - I18n Struct providing a translatable name for the materials

set

64

• ButtonContent - Button struct determining how the button accessing

the material set looks like

• Materials - array of materials comprising the material set

7.4 Enums Currently supported languages

• English
• German
• French
• Spanish
• Italian

Currently supported HMD

• NoHMD
• SteamVR Vive
• SteamVR Index
• OculusHMD
• OculusQuest
• PSVR
• WindowsMixedRealityHMD
• Cosmos

Available Controller Buttons

• None
• Trigger
• Grip
• Face01
• Face02
• Face03
• Face04
• ThumbstickPress
• Shoulder
• ThumbStickUp
• ThumbStickDown
• ThumbStickLeft
• ThumbStickRight
• Menu

Fingers

• Thumb
• Index
• Middle
• Ring
• Pinky

Enums provide a modifiable list of keys that can be used to switch

functions or be displayed in multiple parts of the application. Most enums

used by the AF Core are best explained in their inherent environment

meaning the component or UI or other element they are used in. How-

ever, there a small number of enums that need to be explained here.

I18n Enum

The I18n enum is used in the game instance and settings widgets to

determine which languages are supported by the experience

Full Designation: Enum_I18n

Content: one entry for each supported language

HMD Enum

The HMD enum is used to adjust controller meshes and function map-

pings to the detected HMD in a VR application.

Full Designation: Enum_HMD

Content: one entry for each supported HMD

Controller Buttons Enum

The controller buttons enum is used on the motion controllers, motion

components and most importantly in the function mapping of the preset

data asset (see section 7.1.1) to manage the allocation of the button input

to the controller functions.

Full Designation: Enum_Controller_Buttons

Content: one entry for each controller button incorporated in the controls

of the application

Finger Enum

The finger enum is used to define the finger requirements in the gesture

DA (see section 7.1.4) used for hand-tracking.

Full Designation: Enum_HandTracking_Finger

Content: one entry for each finger of a normal hand.

3D Directions Enum

The 3D direction enum is used to refer to a direction

Full Designation: Enum_Directions_3D

Content:

• Up - usually parallel to z+

65

• Down - usually parallel to z-

• Forward - usually parallel to x+

• Backward - usually parallel to x-

• Right - usually parallel to y+

• Left - usually parallel to y-

66

8 USER INTERFACES

The AF Core provides several user interfaces to choose from for informa-

tion display as well as a plethora of possibilities for the player to interact

with the experience. This includes widget based UI like the HUD, Info

Window or Pallets as well as widget-less UI like the Selection Menu.

However, with the variety of environments the Framework supports by

now it was not possible to provide all of these options for every environ-

ment, especially since the VR environment does not support traditional

HUD elements. The following table will provide you with a guideline of

which UI element can be used in which environments. Please note that screen here encompasses
desktop as well as mobile environments.VR Only Screen Only All Environments

Widget Based • pallets • HUD • info window
• tiny display • panel based menu
• mini tags

Widget-less • radial menu • selection menu

8.1 Widgets
Widget_Base

Widget_Initial
Widget_Button

...

The AF Core provides several custom made widgets that are ready to

use, but also a number of parent classes, that can be used to create

individual widgets. The main challenge while creating widgets for the

As To The Widget Component

Die Widget component of the Frame-
work has been tailored to the AF
inherent widgets and will only work
smoothly with widgets of the class
Widget_Initial or their child
classes. Still it supports the Un-
real widget interaction implementa-
tion with the right settings. For more
information see section 3.5.4.

Figure 61. Code Example: Get Buttons Function.

Framework was implementing reliable interactivity especially in VR. The

Unreal inherent implementation of widget interactivity (via the widget

interaction component) did not prove suitable for all functionalities of the

Framework. Thus, we created our own algorithm, the recursive widget

selection. When working with the Advanced Framework both implemen-

tations can be used in parallel.

• Widget Interaction Component - Unreal inherent implementation for

widget interactions. It is based on the unreal widget interaction com-

ponent.

• Recursive Widget Selection - Advanced Framework inherent widget

interaction implementation which is used with for all widget based

UI elements of the AF Core. For recursive widget selection to work

each widget must be supplied with a function that indicate all sub-

widgets of the widget that contain buttons.

Base Widget

serves as a parent class of all interactive widgets of the AF Core and

implements a limited amount of replication using the widget component

(see section 6.2.4).

Blueprint: Widget_Base

Initial Widget

serves as a box for all sub-widgets and as a connection between the

widget component (see section 3.5.4) and all other widgets.

Blueprint: Widget_Initial

67

8.1.1 Widget Buttons Widget_Button
Widget_Button_Arrow
Widget_Button_Standard
...

The widget buttons represent a class specifically designed to be used in

the Framework’s widgets and widget based UI elements. It is particularly

adjusted to allow the motion controllers in VR applications interact with

widgets.

Each button implements four basically independent states:

• Press - practically the off-state of the button

• Hovered - when the input device or controller is on the button

• Selected - basically the on-state of the button

• Disabled - suspends the buttons functionality

Widget Button - Base

The widget button base class serves as the parent class of all widget

buttons. implements all basic functions of widget buttons. However, the

widget button does not have a visual appearance and is serves as a parent

class only.

Blueprint: Widget_Button

8.1.2 Pallet Widgets

Pallet widgets are specifically designed for the pallet UI which displays

them. Most of them are custom designed for their application, highly

specialized and have numerous sub-widgets.

Multiplayer Pallet Widget

Figure 62. Multiplayer Pallet Widget.

provides all information and functions to host or join multiplayer sessions

(Figure 62).

Blueprint: Widget_Initial_Pallet_Multiplayer

Content:

• Title Box - shows the widget title

• Client Field - contains an additional widget that provides an overview

on available servers

– Title - widget name and a button to refresh the server list

– Server List - contains either a search sign, a list of available

servers or an error message if no servers were found

• Search Bar and Keyboard - allows to search for servers by IP

• Player Field - contains an additional widget giving an overview on

the players in a session

– Title - widget name and a button to refresh the player list

– Player Field - adds a player field widget for each player in

session. This widget contains the player name, ping and a mute

button.

• Host Button - allows to host a session

Menu and Settings Pallet Widget

the menu and settings pallet encompasses a number of widgets that are

all custom designed for their purpose (Figure 63).

68

Blueprint: Widget_Initial_Pallet_Menu

Content:

Figure 63. Settings Pallet Widget.

Figure 64. Debug Pallet Widget.

• Menu Widget - contains a simple menu that allows the player to

reset the level, switch to the menu level and exit the application

• General Settings Widget - contains a list of general settings like lan-

guage as well as buttons to apply new settings and reset to default.

• Audio Settings Widget - contains a list of audio settings as well as

buttons to apply new settings and reset to default

• Graphics Settings Widget - contains a list of graphics settings as well

as buttons to apply new settings, auto-detect optimal settings and

reset to default.

Debug Pallet Widget

serves as an additional tool to test your application (Figure 64).

Blueprint: Widget_Initial_Pallet_Debug

Content:

• Unreal Classes Field - checks if the AF Game classes are set up

correctly

• Pawn Field - states the current pawn and motion controllers in case

of a VR pawn

• Trace Buttons - activate optical traces for the gazeview, select and

grab interactions.

• General Field - shows the FPS and custom debug functionalities

8.1.3 HUD Widgets

Figure 65. HUD Initial

Figure 66. HUD Multiplayer.

In general, HUD widgets implement similar functionalities as pallet wid-

gets. However, since the HUD only provides limited space we created

new, adjusted HUD widgets.

HUD Initial Widget

The HUD initial widget consists in a list of buttons which grant access

to the other HUD widgets.

Blueprint: Widget_HUD_Initial

Multiplayer HUD Widget

provides all information and functions to host or join multiplayer ses-

sions.

Blueprint: Widget_HUD_Multiplayer

Intended Frame: Left

Content:

• Host Button - allows to host a session

• Client Field - contains an additional widget that provides an overview

on available servers

– Title - widget name and a button to refresh the server list

– Server List - contains either a search sign, a list of available

servers or an error message, if no servers were found

69

• Search Bar - allows to search for servers by IP

• Player Field - contains an additional widget giving an overview on

the players in a session

– Title - widget name and a button to refresh the player list

– Player Field - adds a player field widget for each player in

session. This widget contains the player name, ping and a mute

button.

Settings HUD Widgets

Figure 67. HUD Initial

Figure 68. HUD Multiplayer.

Figure 69. Info Window

the menu and settings pallet encompasses a number of widgets that are

all custom designed for their purpose (Figure 67).

Blueprint: Widget_HUD_SettingsPage

Intended Frame: HUD_Widget_Frame_Left

Content:

• Menu Widget - contains a simple menu that allows the player to

reset the level, switch to the menu level and exit the application

• General Settings Widget - contains a list of general settings like lan-

guage as well as buttons to apply new settings and reset to default.

• Audio Settings Widget - contains a list of audio settings as well as

buttons to apply new settings and reset to default

• Graphics Settings Widget - contains a list of graphics settings as well

as buttons to apply new settings, auto-detect optimal settings and

reset to default.

Debug HUD Widget

serves as an additional tool to test your application. The HUD widget

can switch between three sub-widgets of different debug tools (Figure

68).

Blueprint: Widget_HUD_Debug

Intended Frame: Left

Content:

• Unreal Classes Field - checks if the AF Game classes are set up

correctly

• Pawn Field - states the current pawn and motion controllers in case

of a VR pawn and provides three buttons to activate optical traces

for the gazeview, select and grab interactions.

• General Field - shows the FPS and custom debug functionalities

8.2 Widget Based UI

The basic method of widget based UI elements comprises the spawning

or placement of an actor that displays a tailored widget as well as some

basic functions like a delete function. Overall the AF Core implements

the essentials for 6 different UI elements.

• Pallet - spawnable, grabbable actor displaying an interactible wigdet

• Panel-based Menu - auto-generated, interactive menu

• Info Window - spawnable actor displaying an interactible widget

• Tiny Display - small display describing the grabbed actor

• Mini Tags - small widget showing limited amount of information

70

8.2.1 Info Window

provides a customizable environment to display additional information

on an actor. The info window is spawned using select the component at

suitable locations near the actor and displays one or multiple widgets

encapsulated by a blueprint that handles the delete and grab logic for

example. (Figure 69) As many UI elements, the info window
presents itself in the AF Core in its most ba-
sic form. For more elaborate info windows
check the AF Extensions.

Blueprints: BP_InfoWindow

Settings: see section 3.5.5

Overview on Setup

The info window UI relies on an interaction component to spawn it and a
UI component to specify its content.

• Interaction Component - a select type component or gazeview com-
ponent with setup according to section 3.1.1 or 3.1.2

• UI Component - window component with setup as described in section
3.5.5

8.2.2 Panel Based Menu

Figure 70. Large Panel Menu

Allows the player to enter all or selected levels of an application via an

auto-generated menu. In the panel based menu each level is represented

by a selectable panel. The content of each panel is summarized by its

Panel Level Data Asset (see section 7.1.3). Upon selection the panel ex-

pands revealing among others a start button, which grants access to the

level. The panel based menu comes in two designs:

• Large Panel Menu - the main panels are arranged in a row that the

player can scroll along. Upon select the main panel expands one side

panel to its right as shown in Figure 70.

• Small Panel Menu - the main panels are arranged in rows and columns

like tiles (no scrolling). Upon select the main panel moves in front

of the others expands two side panels as shown in Figure 71.

Figure 71. Small Panel Menu

Both designs of the panel based menu are set up in the same way, but

they cannot be mixed.

Blueprints: BP_Demo_LevelMenu_Large, BP_Demo_LevelMenu_Small

Overview on Setup

The panel based menu relies on the collaboration of the panel menu actor
which displays the menu in the application and the panel menu data assets
which provide the content for each level.

• Data Assets - create a panel level DA for each level, that should appear
in the panel based menu using as template either
• PDA_Panel_Small_Level

or
• PDA_Panel_Large_Level

and enter settings according to section 7.1.3.
• In the Map - add an instance of the panel menu actor corresponding

71

to your panel level DA to the menu map.
• On the Panel Menu Actor - access the panel menu component on the

instance of the panel menu actor in the menu level and enter all panel
menu DA.

8.2.3 Pallets Available Pallet Widgets

• Widget Initial Pallet Debug
• Widget Initial Pallet Multiplayer
• Widget Pallet Settings Audio
• Widget Pallet Settings General
• Widget Pallet Settings Graphics
• Widget Pallet Menu

Pallets are actors that display an interactive widget and can be grabbed,

spawned and deleted. Pallets are usually spawned by the radial menu UI

(see section 8.3.2) and are dedicated to a specific function like displaying

settings or a set of functions. As UI elements pallets mainly substitute

for the HUD of non-VR applications. The pallet UI element obtains its

functionality from the widget it displays. The AF Core provides a number

of pallet widgets that mainly serve as examples for the power of this UI

element.

Overview on Setup

Pallets are actors displaying the pallet widget. Most of the widgets contain
all necessary functions already. Only the menu widget needs the menu
widget component which specifies the info DA of the menu level. For further
information look at section 8.3.2 which is about the radial menu.

8.2.4 Tiny Display

Figure 72. Laser controller with tiny display

Figure 73. Actor with mini tags

The tiny display is a special function of the laser motion controller. A

tiny display is spawned when the laser motion controller grabs an actor

giving a name and an image as well as the distance of the actor from the

motion controller and rotation angle around the z-axis.

Blueprint: BP_ControllerDisplay

Settings: see section 3.5.3

Overview On Setup

The tiny display is a pretty simple device, that only works on the laser
motion controller. All logic for spawning and deleting the display is inserted
in the motion controller. Consequently, the only setup necessary is adding
the tiny display component to the participating actors and entering the
desired information.

8.2.5 Mini Tags

Mini tags are spawnable actors for minimalist information display. Mini

tags are encapsulated in the mini tag component (see section 3.5.6). Each

mini tag consist of a widget showing the text element and a line connect-

ing the mini tag to its actor.

Blueprint: BP_MiniTag

72

Settings: see section 3.5.6

Overview on Setup

All settings for the mini tags are encapsulated in the mini tag component,
which must be added to every actor that is supposed to display a mini tag.

8.2.6 HUD

Figure 74. Frames Positioning

The HUD of the Advanced Framework consists of three cooperating

widget types allowing for interactivity and interchangeable content.

• Menu - the menu is created automatically according to the settings

of the HUD component (see section 3.6.4) and grants access to the

interchangeable widgets of the HUD

• Frame - frames are specialized widgets that act as slots on the screen

and manage interchangeable content widgets. Whenever a new wid-

get is opened its assigned frame checks if its occupied and removes

the widget occupying it if necessary.

• HUD Content - the HUD widgets provide the actual content to the

HUD. They are accessed by the menu and occupy frames on the

screen.

Overview on Setup

The HUD is automatically created upon the start of a level. It consists of
the menu and a number of other widgets like the cross in the middle of
the crosshair navigation mode. The content of the menu widget in turn is
determined in the HUD component, which assigns each HUD element with
a name, a widget and a frame (see section 3.6.4).

Figure 75. Button Arrangement Circular

Figure 76. Button Arrangement Rows & Columns

8.3 Widget-less UI

Besides the conventional widget based UI elements the AF Core provides

a number of UI elements especially for VR environments, that forgo

widgets. These widget-less user interfaces are especially convenient for

multiplayer application, since widgets imply a number of issues regard-

ing replication (see section 6.2).

8.3.1 Selection Menu

The selection menu is implemented by the Comp_Select_SelectionMenu

(see section 3.1.1). It consists in a pre-defined set of buttons that are

spawned in convenient assembly and can be interacted with using the

motion controller or other input methods. Sub-sets for additional choice

will be spawned automatically if necessary. Thus, the selection menu

provides an intuitive way to consolidate multiple functionalities of one

actor which is especially convenient for customization purposes.

73

Implemented on: selection menu select component (section 3.1.1)

Possible Functionalities:

• change the visual appearance of an actor

• toggle animation, video or light

• open or close an actor

• toggle an info window about the actor

• delete an actor

Figure 77. Selection menu.

Overview on Setup

The selection menu relies on the cooperation of a number of different
components, that need to be added to the actor and set up accordingly for
the selection menu to function properly. Here is a short summary:

• Interaction Component - selection menu select component with set-
tings according to page 13

• State Components - one state component for each desired button with
setup according to descriptions in section 3.2 and an individual tag to
be referred by on the select component.

8.3.2 Radial Menu Radial Button
Radial Button - Pallet

Radial Button -
Functions Pallet
Radial Button -
Multiplayer Pallet
Radial Button -
Settings Pallet

Radial Button - Quick
Radial Button - Quick
Spawn

The radial menu is encapsulated in a motion component on the motion

controllers of the VR pawn (see section 5.3.3). Consequently, the radial

menu is a VR-only UI. It consists in a circular array of buttons that are

spawned upon opening the radial menu and deleted when the radial

menu is closed or a button is selected. Each radial menu button is a child

of on of the following classes:

• BP_Radial_Button_Pallet - spawning a pallet UI elements (see

section 8.2.3)

• BP_Radial_Button_Quick - serve as templates for customizing

the radial menu

All buttons implement the select functionality and can be selected by

the other motion controller as well as using the thumbstick and trigger

button. The radial menu automatically closes when a button has been

selected. Currently Implemented Radial Buttons

• BP_Radial_Button_Pallet_Custom

• BP_Radial_Button_Pallet_

Multiplayer

• BP_Radial_Button_Pallet_Settings

• BP_Radial_Button_Pallet_Debug

• BP_Radial_Button_Quick

• BP_Radial_Button_Quick_Spawn

 The navigation of the radial menu using
thumbstick and trigger button is already
built-in.

Overview on Setup

The radial menu is the main connection between the VR motion controllers
and the main VR UI element, the pallets, as well as an UI in itself.
Consequently, it needs a bit of care arranging the necessary components
on both the pawn and the motion controller.

• On the VR Pawn - add the radial menu component and enter settings
as described in section 3.6.2

• On the Motion Controller - set up the radial menu motion component
according to section 5.3.3

• In the Preset DA - add a key to open the radial menu to the key
mapping as described in section 7.1.1 and 3.6.1

74

9 GLOSSARY

A

absolute position: location of an item in relation to the origin of the map.

anchor: component you add to the accepting actor of a snap to anchor

process to determine location and direction of the attached actor (section

3.3.3).

asymmetric game play - means here specifically a VR application that

combines a VR pawn controlled by the player with a HMD and and an

asymmetric pawn controlled by another player using desktop and key-

board.

asymmetric pawn - additional pawn in a VR application that is spawned

by the VR pawn to facilitate asymmetric game play (section 5.3.5).

B

Base Pawn: parent class of all customized pawns in the framework (sec-

tion 5)

body slot: anchor that has been placed on a character pawn.

button mapping: assignment of buttons of the physical controllers to

functionalities of the motion controller via a preset.

C

character pawn: pawn class that provides the player with a virtual body

component: exchangeable functional element implementing a function-

ality (section 3)

D

datatables: datatables are Unreal inherent tables that function like a database

in its simplest form. Each entry is identified by a key which allows

functions to return the entry of the corresponding cell. The framework

uses datatables mainly for the internationalization (I18n, section 4)

desktop pawn: child class of the screen pawn that is adjusted to navigate

an application using keyboard an mouse (see section 5.4)

E

event dispatcher: notification function to enable actors to react to changes

in other actors.

F

G

game instance: manages the information transfer (most importantly of

the level key) when the player changes the level

game mode: spawns the player controller and the game state upon starting

75

an application.

game state: manages the transition maps when a level is loaded.

gazeview: interaction method that uses the forward trace of the player

camera to highlight and select actors.

grab: moves an actor within the application by attaching it to the motion

controller (VR) or pawn (other environments)

H

helper: mostly automatically created actors to support other classes in

executing their functionalities.

I

impact location: location where the actor is grabbed or latched onto in

screen environments

interfaces: standards for information transfer. Do not confuse with structs.

intro: first thing that happens when the application is started. Usually it

shows a skysphere and a logo.

J

K

L

latch: moves an actor or mesh component within an application by at-

taching the motion controller (VR) or pawn to the actor.

level: an individually designed map the player visits during the applica-

tion or a combination of them. Practically each construct you assign with

a level data asset.

level data asset: data asset collecting all essential information on a level

including world map, transition screen content and pawns.

M

menu level: map of the first level loaded in a play-through of your

application, most probably containing a menu.

mobile pawn: child class of the screen pawn that is adapted to navigate

an application using a touchscreen (section 5.5)

motion component: component implementing a controller functionality

in VR (section 5.3.3)

motion controller: container for motion components in VR applications

(section 5.3.2)

N

O

P

76

pallet: freely placable UI element that displays information or spawns

actors (section 8.2.3)

panel data asset: consolidates the content of a panel in the panel based

menu

panel based menu: auto-generated menu pause map: default map that

is loaded, when the player presses pause.

player controller: spawns and controls the pawns, manages the transition

to the pause map and back

preset: data asset that defines the button mapping for a motion controller

(section 7.1.1)

Q

R

relative position: position of an item relative to a selected point that does

not coincide with the origin of the map.

replicating actor: actor that replicates its position or state to keep track

of other players actions in multiplayer

S

screen pawn: parent class of all pawns adjusted for applications that are

not in VR (section 5.1)

structs: container holding selected variables that are usually transferred

together.

T

transition map: default map that is loaded and displayed before and

while levels are loaded.

timeout (highlighting): time until the highlighting is removed from an

item.

trigger: actor that can be manipulated to activate a functionality on a

receiving actor

U

UI: UI or user interfaces allow the player access to information and

selected functionalities

V

visuals component: allows the change of the appearance of an instance

of an actor.

W

widget: system to create 2D elements to be displayed in the application

77

worldmap: practically an empty container for a level

X

Y

Z

78

	Introduction
	The Core Framework
	File Structure - Core Framework

	Basics
	Game Classes
	Level Setup
	Navigation
	Changing Levels
	Intro Level
	Transition
	Streaming Level Manager

	Components
	Interaction Components
	Select Components
	GazeView Components
	Grab Components
	Latch Components
	Overlap Components
	Teleport Component

	State Components
	Active Component
	Color Component
	Drag Component
	Highlight Component
	Name Component
	Open Component
	Percent Component
	Trigger Component
	Values Component
	Velocity Component
	Visual Component

	Snapping Components
	Surface Connector Component
	Anchor Connector Component
	Anchor Component
	Attach Component

	Multiplayer Components
	Base Replication Component
	Actor Replication Component
	Component Replication Component

	UI Components
	Menu Pallet Component
	Panel-based Menu Components
	Tiny Display Component
	Widget Component
	Window Component
	Mini Tag Component

	Pawn Components
	Controls Component
	Radial Menu Component
	Touch Component
	HUD Component

	Info Components
	Player Info Component

	Miscellaneous Components
	Delete Component
	Orbit Component
	Spawn Actor Component
	Spawn Location Component
	Spectator Component
	Vehicle Component
	Video Component

	Interfaces
	State Component Interfaces
	Components With Binary Interface
	Integer Interface
	Integer Interface
	Percent Interface
	Color Interface
	Name Interface
	Trigger Interface
	Velocity Interface

	Interaction Interfaces
	GazeView Interface
	Latchable Interface
	Overlap Interface
	Grabable Interface
	Selectable Interface

	Miscellaneous Interfaces
	Deletable Interface
	Highlightable Interface
	Grabbing Actor Interface
	I18n Interface

	Environments
	Pawn Hierarchy
	Startup
	Virtual Reality
	VR Pawn
	Motion Controllers
	Motion Components
	Presets
	Asymmetric Game Play

	Desktop
	Mobile Devices

	Multiplayer
	Client Server Models and Ownership
	Replication
	State Components and Interaction Components
	Non-predetermined Movement
	Spawning and Deleting of Actors
	User Interfaces

	Data
	Primary Data Assets (PDA)
	Preset Data Assets
	Level Data Asset
	Panel Data Asset
	Gesture Data Assets

	Data Tables
	Structs
	Enums

	User Interfaces
	Widgets
	Widget Buttons
	Pallet Widgets
	HUD Widgets

	Widget Based UI
	Info Window
	Panel Based Menu
	Pallets
	Tiny Display
	Mini Tags
	HUD

	Widget-less UI
	Selection Menu
	Radial Menu

	Glossary

