Advanced Framework - Core

Documentation

HumanCodeable
January 30, 2021

*

CONTENTS
1 Introduction| 5
L1 TheCore Frameworkl 5
(1.2 File Structure - Core Framework| 6
2 Basics] 7
21 GameClasses|. 7
2.2 Level Setup|. 8
2.3 Navigation| e 8
2.4 Changing Levels|. o 9
2.4.1 Intro Levell 9
242 Transitionl 10
[2.4.3 Streaming Level Manager| 10
[3 Components| 11
3.1 Interaction Components| o L. 11
[3.1.1 Select Components| 12
[3.1.2 GazeView Components| 13
[3.1.3 Grab Components| L L oo 14
[3.1.4 Latch Components|. 15
[3.1.5 Overlap Components| 16
13.1.6 Teleport Component|. 17
3.2 State Components| L L 18
[3.2.1 Active Component]. oo 18
[3.2.2 Color Component| 19
13.2.3 Delete Component|. 19
[3.2.4 Drag Component|, 19
[3.2.5 Highlight Component|. 20
13.2.6 Name Component| 21
3.2.7 Open Component| 21
[3.2.8 Percent Component| 22
13.2.9 Trigger Component], 22

[3.2.10 Values Componenf 22

[3.2.11 Velocity Component 23
[3.2.12 Visual Component 23
[3.3 Shapping COMPONENtSo 23
[3.3.1 Surface Connector Component 24
[3.3.2 Anchor Connector Component| 25
[3.3.3 Anchor Component| 25
[3.3.4 Attach Component| 25
[3.4 Multiplayer Components|. 26
(3.4.1 Base Replication Component. 26
[3.4.2 Actor Replication Component| 27
(3.4.3 Component Replication Component| 27
[3.5 Ul Components| e 27
[3.5.1 Menu Pallet Component] 27
[3.5.2 Panel-based Menu Components 28
[3.5.3 Tiny Display Component|. 28
354 Widget Component 29
3.55 Window Component 29
3.5.6 Mini Tag Component 29
3.6 Pawn Components e 30
3.6.1 Controls Component 30
3.6.2 Radial Menu Component. 31
3.6.3 Touch Component e 32
3.6.4 HUD Component 33
3.7 Miscellaneous Components 33
3.7.1 Orbit Component 33
3.7.2 Spawn Actor Component. 33
3.7.3 Spawn Location Component 34
3.74 Spectator Component e 34
3.75 Vehicle Component 34
Interfaces 36
4.1 State Component Interfaces 36
41.1 Components With Binary Interface 36
4.1.2 Integer Interface 36
4.1.3 Percent Interface 36
4.1.4 Color Interface 36
4.1.5 Name Interface 36
4.1.6 Trigger Interface 37
4.1.7 Velocity Interface 37
4.2 Interaction Interfaces 37
421 GazeView Interface 37
4.2.2 Selectable Interface 37
4.2.3 Deletable Interface 37
4.2.4 Highlightable Interface 37

4.3 Miscellaneous Interfaces e 37

4.3.1 Grabbing Actor Interface 37
432 [18n Interface 38
Environments 39
51 Pawn Hierarchy e 39
5.2 Startup . . . 40
5.3 Virtual Reality 40
5.3.1 VR Pawn e 40
5.3.2 Motion Controllers 41
5.3.3 Motion Components 42
534 Presets e 47
5.3.5 Asymmetric Game Play a7
5.4 Desktop 48
55 Mobile Devices e e 48
Multiplayer 50
6.1 Client Server Models and Ownership, 50
6.2 Replication e 50
6.2.1 State Components and Interaction Components 51
6.2.2 Non-predetermined Movement, 51
6.2.3 Spawning and Deleting of Actors 51
6.2.4 User Interfaces e 51
Data Assets 53
7.0.1 Preset Data Asset 53
7.0.2 Level Data Asset 54
7.0.3 Panel Data Asset. e 55
User Interfaces 57
8.1 WIAgeLS e e 57
8.1.1 Widget Buttons L 58
8.1.2 Pallet Widgets 58
8.1.3 HUD Widgets 59
8.2 Widget Based Ul e 60
8.2.1 Inffo Window 61
8.2.2 Panel Based Menu 61
8.2.3 Pallets e 62
8.2.4 Tiny Display e 62
8.2.5 MiNi Tags o o o 62
8.2.6 HUD . . . e 63
8.3 Widget-less Ul e 63
8.3.1 Selection Menu 63
8.3.2 Radial Menu e 64

10

Data

9.1 Data Tables e 65
9.2 SHUCES . . o o o o e e e e e e e e e e e e e e e e e 65
9.3 ENUMS . . . o e e e 66
Glossary 68

1 INTRODUCTION

Version 4.0 of the Advanced Framework brings some major innovations
compared to older versions. Responding to various user issues with the
convoluted version 3.1 we decided to split the Framework into a slim
core and a number of extensions, that can be purchased separately. The
Core Framework can be used on its own or combined with a selection of
Advanced Framework Extensions which provide additional functionali-
ties and examples tailored to a speci ¢ type of application. Up until now
ve AF Extensions are planned for the following use cases:

- provides the tools and environment to hold lectures
or record videos including a fully set up class room level and studio
level as examples.

- summarizes all functionalities to set up, show and modify
architectural visualizations from a room to a whole building.
- focuses on one complex actor, that can be equipped with
a myriad of functionalities for customization and interaction.
- contains tools and examples to set up training simulations.
- provides a selection of useful assets to create video games
and game like experiences
Additionally a number of multi-use assets like the smart watch or the
keyboard were separated in form of Advanced Framework Utilities. AF
Utilities can be freely combined with the Core Framework and any AF
Extension. Up until now the following AF Utilities are planned:

- equips the VR pawn with a watch-like Ul that displays
information and controls the display Ul element.

- provides an actor that can be used as keyboard in the
application

- provides an actor that can create multicolored splines

- components, materials and Ul to setup and display 2D
and 3D minimaps including minimaps with multiple oors.

- Ul and functions to access and display webpages

Splitting the Framework into a Core, Extensions and Utilities enables
everyone to purchase their own modi cation of the Framework that is
adapted to their speci c use case. Also it allows us to include many more,
hand made, ready to use examples to facilitate using the Framework even
for less experienced users.

1.1 The Core Framework

The Core Framework provides all basic functionalities. Neither AF Ex-
tensions nor AF Utilities can function without the AF Core. The AF Core
provides:
over 20 components to implement all kinds of functionalities.
pawns adjusted to VR-, desktop- and mobile environments.
various Ul elements including a HUD, menus and pallets
all basic game- and info- les, helpers, managers and widgets
11 example maps to showcase the basic tools of the AF Core

1.2 File Structure - Core Framework

The AF Core has a predetermined folder structure which can be the basis
for any project. Every new element of your experience can be integrated
unequivocally into the structure to keep even large projects neat and easy
to navigate. Most of the folders are self explanatory: the folders named
Animations, Materials, Meshes, Particles, etc. will contain their respective
le type. Hereafter, you nd a list of the folders that are most important

in this documentation and what they contain.

contains most of the logic provided by the framework.
contains the custom components of the AF Core. For further
information see section 3.

contains all game classes (see section 2) like the game mode
or the player controller.

contains actors that support components or other actors in
their functions. Helpers are spawned automatically and do
not need any setup.

contains all les for a basic level setup like the Maplinfo
Actor or the Post Process Volume for highlighting.
contains the pawn parent classes of the AF Core.
contains all Ul-actors provided by the Framework including
pallets or the info window (see section 8).

contains the motion controller and the motion components
as described in section 5.3.3 and 5.3.2.

contains all custom made AF Core widgets

contains a number of objects used to store data (section 7).
contains all Meshes, Materials and Blueprints shown in the
example maps.

contains all interfaces governing information transmission
between components or in general.

provide a set of universally accessible functions.

contains map templates.

AFCore
| Animations
. _AnimBP
, _ Blueprints
, Components
Interaction
Multiplayer
Pawn
Snapping
State
ul
util
| EditorScripting
| Game
| _Helpers
| Level
Maplnfo
Pause
etc
| _Pawn
| Ul
| Utility
| VR
t MotionComponents
MotionControllers
| Widgets
. Curves
| DataAssets
Panel
Level
Panel
Presets
| Datatables
. Enums
| Examples
, _Font
,__Interface
| Libraries
| _Maps
. Materials
| _Meshes
. Movies
| Sound
| Splash
| Structs
| Textures

2 BAsiIcs
2.1 Game Classes

Game classes implement all basic functions for a application to function.
This includes level transitions, pawn navigation, settings and other es-
sential data.

Game Mode

Declares all other game classes except the game instance.
Blueprint : BP_GameMode_Main
Settings: should not be touched

Game Instance

The game instance has the unique ability to keep its state even after a
level change which makes it useful to store persistent data. Thus, it is the
best place to store settings like language, graphics or audio. Additionally
the game instance stores the data assets of the current level.

Blueprint : BP_Gamelnstance_Main

Settings: all variables are automatically set when the game instance is
created

Player Controller

The player controller spawns, possesses and navigates the pawn and
handles the level transition logic as well as the pause.
Blueprint : BP_Player_Controller_Main
Settings:
- determines how the pawn is selected upon starting the
application
— Dynamic - enables the pawn selection faccording to the environ-
ment check as shown in Figure 1
— ForceVR - selects the VR pawn speci ed in the level data asset
not regarding the environment
— ForceDesktop - selects the desktop pawn specied in the level
data asset not regarding the environment
— ForceMobile - selects the mobile pawn speci ed in the level data
asset not regarding the environment
— OnlyFirstVR - de nes that in multiplayer VR applications only
the player with player index 0 is in VR

Player State
The player state handles and provides information on each player and
thus, is especially useful for multiplayer.
Blueprint : BP_PlayerState_Main
Settings:
- player color in multiplayer
- number of the player

- In a multiplayer experience the game
mode is only accessible by the server, not
the clients. Therefore, we stripped a lot
of features from the game mode and dis-
tributed them to other entities.

Figure 1. Startup and pawn selection.

2.2 Level Setup

Each level of the Framework is encapsulated in a world map that con-
solidates all maps as well as the loading of the level. Additionally, the
Framework relies on a number of essential actors in every level to func-
tion properly. These need to be placed and setup in every new level.

Maplnfo Actor

refers to the data asset (DA) containing basic information about each level
like which pawns to use or which levels to load.

Blueprint : BP_Maplinfo

Setup:

- refers to the level data asset (see section 7.0.2)

Player Position

speci es the location and rotation where the player pawn is spawned
upon starting the level.
Blueprint : BP_PlayerPosition
Setup
- limits the player pawns spawned here to one player
index
- converts the player position in the default spawn point for
all players in a multiplayer experience

Post Process Volume

handles the post process highlighting.
Blueprint : BP_PostProcess
Setup: no additional setup necessary

2.3 Navigation

The navigation elements of the Framework are mainly connected to the
teleport system which is very central to the VR environment, since normal

movement in VR is prone to cause motion sickness. The teleport navi-
gation elements mainly serve to restrict the areas a player can teleport
to.

Teleport Area

Speci es wider areas where the player can safely teleport to. The teleport
area is a plane actor with a teleport and a select component as possible
interaction methods.
Blueprint : BP_TeleportArea
Settings:
- de nes what the teleport area looks like
- enables the player to perceive the teleport area in the
application.
- Maximum distance in which the trace
of the teleport area searches for a oor actor to teleport the pawn to.

Figure 2. Minimum level setup.

Unnecessary if no post process high-
lighting is used in the level.

- If you dont want to use teleportation to
move the pawn, you can pass including a
teleport area or teleport mesh

Figure 3. Teleport Area

Teleport Point

Speci es a limited number of locations that the player can teleport to.
A teleport point is basically an actor containing the teleport component
(see section 3.1.6) and a number of other interaction components.
Blueprint : BP_TeleportMesh

Settings:

Use Rotation - forces the pawn to adopt the rotation of the teleport T 9ure 4. Teleport Point

mesh actor if enabled

Both teleportation elements can be either toggled via the teleport comp@-
nent or via the select component.

Teleport Select - the teleport is implemented as a custom functig
using the select component as interaction component, avoiding tRe
teleport motion component and additional input
Normal Teleport - the teleport is implemented using the teleport co
ponent and the teleport motion component, providing more elaborafe
controls and settings

2.4 Changing Levels

The Framework provides a number of mechanics to smoothly load or
change levels. This includes the transition and intro screens but also
managers orchestrating streaming levels within one map.

2.4.1 |Intro Level

The rst level loaded in an application is the intro level. The Framework
provides a completely set up intro level which can be used as a template.
It contains:
Intro Screen - to display the intro widget and handle the transition
to the next level
Player Position - to specify where the player pawn is spawned
Map Info Actor - containing the level data asset with the info about
the intro level
Skysphere - to provide the background for the intro level
Except the intro screen all other actors in the intro level belong to the
actors necessary for a basic level set up.

Intro Screen

The intro screen is the of the intro level which handles most of the logic.
It displays the intro widget and also toggles the transition to the next
level
Blueprint : BP_IntroScreen
Settings:
Level to Load - contains the level data asset of the next level that
should be loaded

2.4.2 Transition

The transition object is automatically created and lled with content as
speci ed in the level data asset (see section 7.0.2) whenever a new level
is loaded.

Blueprint : BP_Transition - For customized transitions create a child
of the transition class, customize it and enter
it as transition class into the level DA of the

2.4.3 Streaming Level Manager corresponding levels.

This manager contains an array of all streaming levels that should be
accessible in the map and the functions to exchange one streaming level
for another.
Blueprint : BP_Manager_StreamingLevel
Settings:
Available Stream Levels - array containing a struct for each streaming
level that should be accessible

— Name - contains the key and 118n data table for the name shown
as level name

Image - contains the texture shown for the level

Level Name - full name of the map of the streaming level

— AR - under construction

Currently Loaded Level - is automatically set to the selected level,
no setup necessary

Currently Loaded Index - index of the current streaming level in the
array of streaming levels. Also determines which streaming level is
loaded upon starting the level

In the Worldmap - add the persistent level and all streaming levels
the same worldmap

In the Persistent Level - add an instance of the streaming level mé
ager

On the Streaming Level Manager Instance - enter the data for

accesible streaming levels and the index of the rst streaming level
be loaded

Access Method - prepare a functionality that calls the load streami
level function of the manager

10

3 COMPONENTS

Components can be attached to actor classes as well as instances of
actor classes providing the desired functionalities. Components are freely
exchangeable and enable the customization of actors without building
a complicated class hierarchy. All components we created for the AF
Core fall into one of the following categories depending on their main
functionality:
Interaction Components - handle the interaction between the player
and the actors in an application including selecting, grabbing and
others.
State Components - apply, initiate and replicate changes of state for
the owning actor.
Snapping Components - cover all necessary requirements to allow
actors to snap into place after being released by a player.
Multiplayer Components - consolidate a set of useful components Figure 5. Component System
handling the multiplayer.
Ul Components - encompass the design, display and content of Ul

elements.
Pawn Components - provide the pawn with functions like controls. Every component can be equippe
Miscellaneous Components - comprise a set of useful components with an array of tags that can be
that work in the background to enable advanced functionalities. used to refer to this component b
other components. This includes alst
3.1 Interaction Components Unreal inherent components like th

All pawns and motion controllers of the Framework are designed to static mesh component. Componen

tags play a vital role in coordinating
component interactions. They can be
used to identify a specic component
on an actor (see section 3.1) or to se
lect a suitable component/actor from
a set (see section 3.3).

use interaction components to implement interactions of the player with
an actor. Each set of components is adapted for a specic interaction
type like select or grab. Nevertheless, all interaction components have
some common settings despite their different functions. These encompass
mainly the identi cation of the actor and component the interaction is
supposed to toggle and the highlighting.

Component Identi cation

Interaction components transmit the player input to the other components

of the actor that implement the desired functionalities. These can be on
the same actor or on another actor or on both. This facilitates the setup
of triggers. Consequently, it must be possible to distinguish a single
component on a single instance or a group of instances unequivocally.
This is done by the Component De nition Struct which contains:

Component Tag To Search For - refers to the component on the) N
. . . Figure 6. Component De nition Struct
affected actors that is toggled by the interaction
Actors To Trigger - array on each instance of the actor, that contains
an element for each actor in the level that is affected by the interaction
component
Trigger Also Self - automatically includes the actor itself in the actors
to trigger array. If no other actors are affected by the interaction

component no additional setup is necessary.

11

Highlighting
Most interaction components support a customizable highlighting func-
tion. The gazeview component is the only exception. The highlight set-
tings on the interaction component that determine if and how the actor
is highlighted consist in:
- speci es if and how actor is highlighted
— None - no highlighting
— Custom - uses a function implemented on the actor
— Post Process - uses a colored rim around the actor mesh for Figure 7. Post Process Highlighting
highlighting, default setting (see Figure ?7
— Mesh - duplicates the meshes of the actor and sets a different
material to create an outline effect
— Material Function - activates a material function changing the
materials glow parameter for highlighting - Not recommended for emissive materials.
- determines the color for post process and material
function highlighting
- de nes the material highlight function - Currently only one is available.

3.1.1 Select Components
Comp_Select

The select components implement the selection of actors in the appli- tCOmp Select_Comp
cation. Their main function however, is information transfer. In conse- Comp_Select_SelectionMenu
guence, select components collaborate constantly with other components

depending on what should happen upon selection.

Select Component - Base

Serves as parent class for the more speci ed select components and as
possibility to implement custom functionalities while pro ting from the
logic of the select component.

Blueprint : Comp_Select

Settings:
- temporarily disables the select component
- allows other components to distinguish the select com-
ponent
- refers to the mesh corresponding to the
select component - To make all meshes selectable enter

- contains an element for each input source, None’.
that can interact with the select component
— None - No input is accepted
Laser - accepts the laser motion controller as input

Screen - accepts input from all screen-type pawns
— Touch - accepts input from hand motion controller by touch
Events:
- toggles when the key assigned to the select interac-
tion is pressed
- toggles when the key assigned to the select inter-
action is released

- toggles when the input device hovers on the actor - Almost impossible to implement with a
touchscreen input device.

12

	Introduction
	The Core Framework
	File Structure - Core Framework

	Basics
	Game Classes
	Level Setup
	Navigation
	Changing Levels
	Intro Level
	Transition
	Streaming Level Manager

	Components
	Interaction Components
	Select Components
	GazeView Components
	Grab Components
	Latch Components
	Overlap Components
	Teleport Component

	State Components
	Active Component
	Color Component
	Delete Component
	Drag Component
	Highlight Component
	Name Component
	Open Component
	Percent Component
	Trigger Component
	Values Component
	Velocity Component
	Visual Component

	Snapping Components
	Surface Connector Component
	Anchor Connector Component
	Anchor Component
	Attach Component

	Multiplayer Components
	Base Replication Component
	Actor Replication Component
	Component Replication Component

	UI Components
	Menu Pallet Component
	Panel-based Menu Components
	Tiny Display Component
	Widget Component
	Window Component
	Mini Tag Component

	Pawn Components
	Controls Component
	Radial Menu Component
	Touch Component
	HUD Component

	Miscellaneous Components
	Orbit Component
	Spawn Actor Component
	Spawn Location Component
	Spectator Component
	Vehicle Component

	Interfaces
	State Component Interfaces
	Components With Binary Interface
	Integer Interface
	Percent Interface
	Color Interface
	Name Interface
	Trigger Interface
	Velocity Interface

	Interaction Interfaces
	GazeView Interface
	Selectable Interface
	Deletable Interface
	Highlightable Interface

	Miscellaneous Interfaces
	Grabbing Actor Interface
	I18n Interface

	Environments
	Pawn Hierarchy
	Startup
	Virtual Reality
	VR Pawn
	Motion Controllers
	Motion Components
	Presets
	Asymmetric Game Play

	Desktop
	Mobile Devices

	Multiplayer
	Client Server Models and Ownership
	Replication
	State Components and Interaction Components
	Non-predetermined Movement
	Spawning and Deleting of Actors
	User Interfaces

	Data Assets
	Preset Data Asset
	Level Data Asset
	Panel Data Asset

	User Interfaces
	Widgets
	Widget Buttons
	Pallet Widgets
	HUD Widgets

	Widget Based UI
	Info Window
	Panel Based Menu
	Pallets
	Tiny Display
	Mini Tags
	HUD

	Widget-less UI
	Selection Menu
	Radial Menu

	Data
	Data Tables
	Structs
	Enums

	Glossary

